Keywords and phrases: spectral analysis, eigenvalues, spectral singularities, discrete equation.
Received: June 25, 2021; Revised: July 5, 2021; Accepted: August 12, 2021; Published: November 12, 2021
How to cite this article: Nimet Coskun, Finite system of discrete Sturm-Liouville equations with spectral singularities and a general boundary condition, Advances in Differential Equations and Control Processes 25(2) (2021), 165-178. DOI: 10.17654/DE025020165
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] M. Adivar and E. Bairamov, Difference equations of second order with spectral singularities, Math. Anal. Appl. 277 (2003), 714-721. [2] Z. S. Agranovich and V. A. Marchenko, The Inverse Problem of Scattering Theory, Gordon and Breach, New York, 1967. [3] E. Bairamov, O. Cakar and A. M. Krall, Non-selfadjoint difference operators and Jacobi matrices with spectral singularities, Math. Nachr. 229 (2001), 1-5. [4] C. Coskun and M. Olgun, Principal functions of non-selfadjoint matrix Sturm-Liouville equations, J. Comput. Appl. Math. 235(16) (2011), 4834-4838. [5] E. P. Dolzhenko, Boundary value uniqueness theorems for analytic functions, Math. Notes 25 (1979), 437-442. [6] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford University Press, 2018. [7] G. Sh. Guseinov, On the concept of spectral singularities, Pramana: Journal of Physics 73(3) (2009), 587-603. [8] T. Koprubasi and N. Yokus, Quadratic eigenparameter dependent discrete Sturm-Liouville equations with spectral singularities, Appl. Math. Comput. 244 (2014), 57-62. [9] T. Koprubasi and N. Yokus, Principal functions of non-selfadjoint discrete Sturm-Liouville equations with quadratic spectral parameter in boundary conditions, Complex Variables and Elliptic Equations 63(4) (2018), 472-481. doi:10.1080/17476933.2017.1322073. [10] A. M. Krall, E. Bairamov and O. Cakar, Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, Journal of Differential Equations 151 (1999), 252-267. [11] E. Kir, Spectral properties of a finite system of Sturm-Liouville difference operators, Journal of Difference Equations and Applications 17(3) (2011), 255-266. [12] V. E. Lyance, A differential operator with spectral singularities I, II, AMS Translations 2(60) (1967), 227-283. [13] V. A. Marchenko, Sturm-Liouville Operators and their Applications, Kiev Izdatel Naukova Dumka, 1977. [14] A. Mostafazadeh, Physics of spectral singularities, Geometric Methods in Physics, Birkhäuser, Cham, 2015, pp. 145-165. [15] G. Mutlu and E. Kır Arpat, Spectral properties of non-selfadjoint Sturm-Liouville operator equation on the real axis, Hacettepe Journal of Mathematics and Statistics 49(5) (2020), 1686-1694. doi:10.15672/hujms.577991. [16] G. Mutlu and E. Kır Arpat, Spectral analysis of non-selfadjoint second order difference equation with operator coefficient, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24(3) (2020), 494-500. [17] M. A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operator of second order on a semi-axis, AMS Transl. 2 (1960), 103-193. [18] M. A. Naimark, Linear Differential Operators I, II, Ungar, New York, 1968. [19] N. Yokus and N. Coskun, A note on the matrix Sturm-Liouville operators with principal functions, Mathematical Methods in the Applied Sciences 42(16) (2019), 5362-5370.
|