Keywords and phrases: BL-algebra, MV-algebra, reticulation of BL-algebras, pure ideals, stable topology.
Received: August 23, 2021; Accepted: September 20, 2021; Published: September 30, 2021
How to cite this article: Albert Kadji, Pure ideals and stable topology in BL-algebras, Universal Journal of Mathematics and Mathematical Sciences 14(2) (2021), 67-106. DOI: 10.17654/UM014020067
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] L. P. Belluce and S. Sessa, The stable topology for MV-algebras, Quaest. Math. 23 (2000), 269-277. [2] C. Buşneag and D. Piciu, The stable topology for residuated lattices, Soft Comput. 16 (2012), 1639-1655. [3] V. Cavaccini, C. Cella and G. Georgescu, Pure ideals of MV-algebras, Math. Japonica 45(2) (1997), 303-310. [4] G. Calugareanu, Purity in ideal lattices, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 45 (1999), 39-44. [5] W. H. Cornish, O-ideals, congruences and sheaf representations of distributive lattices, Rev. Roumaine Math. Pures Appl. 22(8) (1977), 1059-1067. [6] E. Eslami and F. Kh. Haghani, Pure filters and stable topology on BL-algebras, Kybernetika 45 (2009), 491-506. [7] H. El-Ezeh, Topological characterization of certain classes of lattices, Comm. Math. 39 (1990), 15-18. [8] G. Georgescu and I. Voiculescu, Isomorphic sheaf representations of normal lattices, J. Pure Appl. Algebra 45 (1987), 213-223. [9] P. Hájek and F. Montagna, A note on first-order logic of complete BL-chains, Math. Log. Quart. 54 (2008), 435-446. [10] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998. [11] P. T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge, 1982. [12] B. B. N. Koguep, C. Lele and J. B. Nganou, Normal hyperlattices and pure ideals of hyperlattices, Asian-Eur. J. Math. 9 (2016), 1650020, 14 pp. [13] M. Kondo and W. A. Dudek, Filter theory of BL-algebras, Soft. Comput. 12 (2007), 419-423. [14] M. Kondo and W. A. Dudek, On the transfer principle in fuzzy theory, Mathware Soft Comput. 12 (2005), 41-55. [15] C. Lele and J. B. Nganou, MV-algebras derived from ideals in BL-algebras, Fuzzy Sets and Systems 218 (2013), 103-113. [16] C. Lele and J. B. Nganou, The Chang-Mundici l-group of BL-algebras, Houston J. Math. (to appear). [17] C. Lele and J. B. Nganou, Chang-Mundici enveloping unital lattice-group of BL-algebras, Proceeding of TACL2013 on Topology, Algebra and Category with Logic, 2013, pp. 166-169. [18] C. Lele and J. B. Nganou, Pseudo-addition and fuzzy ideals in BL-algebras, Ann. Fuzzy Math. Inform. 8(2) (2014), 193-207. [19] L. Leustean, The prime and maximal spectra and the reticulation of BL-algebras Cent. Eur. J. Math. 1(3) (2003), 382-397. [20] G. De Marco, Projectivity of pure ideals, Rend. Sem. Mat. Univ. Padova 69 (1983), 289-304. [21] B. Meng and Y. Xin, Prime ideals and Godel ideals BL-algebras, Journal of Advances in Mathematics 99 (2015), 2989-3005. [22] E. Turunen, BL-algebras and basic fuzzy logic, Mathware Soft Comput. 6 (1999), 49-61. [23] E. Turunen, Boolean deductive systems of BL-algebras, Arch. Math. Log. 40 (2000), 467-473. [24] A. Walendziak, on implicative and maximal ideals of BL-algebras, Comment. Math. 54(2) (2014), 247-258. [25] Y. Yang, X. Xin and R. Zhang, Note on fuzzy Godel ideals of BL-algebras, Glob. J. Math. (2015), 267-271.
|