Keywords and phrases: clinical prediction model, binary outcome, calibration index, integrated calibration index, high-dimensional settings.
Received: September 2, 2021; Accepted: October 7 2021; Published: October 20, 2021
How to cite this article: Yuki Shiko, Ippeita Dan and Yohei Kawasaki, Comparison of penalized regression methods for optimizing the parsimonyfor calibration performance of clinical prediction model in high-dimensional settings, JP Journal of Biostatistics 18(3) (2021), 437-457. DOI: 10.17654/BS018010437
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
Reference:
[1] J. A. N. Dorresteijn et al., Estimating treatment effects for individual patients based on the results of randomised clinical trials, BMJ 343(1) (2011), d5888-d5888. doi: 10.1136/bmj.d5888. [2] R. A. Hayward, D. M. Kent, S. Vijan and T. P. Hofer, Multivariable risk prediction can greatly enhance the statistical power of clinical trial subgroup analysis, BMC Med. Res. Methodol. 6(1) (2006), 18. doi: 10.1186/1471-2288-6-18. [3] E. Steyerberg, Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating, Springer-Verlag, New York, 2019. [4] F. E. Harrell, Jr., K. L. Lee and D. B. Mark, Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors, Stat. Med. 15 (1996), 361-387. doi: https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168 >3.0.C O;2-4. [5] P. C. Austin and E. W. Steyerberg, The Integrated Calibration Index (ICI) and related metrics for quantifying the calibration of logistic regression models, Stat. Med. 38(21) (2019), 4051-4065. doi: 10.1002/sim.8281. [6] P. C. Austin, F. E. Harrell and D. Klaveren, Graphical calibration curves and the integrated calibration index (ICI) for survival models, Stat. Med. 39(21) (2020), 2714-2742. doi: 10.1002/sim.8570. [7] D. W. Hosmer and S. Lemeshow, Goodness of fit tests for the multiple logistic regression model, Comm. Statist. Theory Methods 9(10) (1980), 1043-1069. doi: 10.1080/03610928008827941. [8] D. W. Hosmer, T. Hosmer, S. L. Cessie and S. Lemeshow, A comparison of goodness-of-fit tests for the logistic regression model, Stat. Med. 16(9) (1997), 965-980. doi: https://doi.org/10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509 =>3.0.C O;2-O. [9] Y. Huang, W. Li, F. Macheret, R. A. Gabriel and L. Ohno-Machado, A tutorial on calibration measurements and calibration models for clinical prediction models, J. Am. Med. Inform. Assoc. 27(4) (2020), 621-633. doi: 10.1093/jamia/ocz228. [10] J. Wang et al., Development and internal validation of risk prediction model of metabolic syndrome in oil workers, BMC Public Health 20(1) (2020), 1828. doi: 10.1186/s12889-020-09921-w. [11] S. Hong, S. Lee, J. Lee, W. C. Cha and K. Kim, Prediction of cardiac arrest in the emergency department based on machine learning and sequential characteristics: model development and retrospective clinical validation study, JMIR Med. Inform. 8(8) (2020), e15932. doi: 10.2196/15932. [12] Y. Shiko, I. Takashima, I. Dan and Y. Kawasaki, Comparison of variable selection methods for optimizing the calibration of clinical prediction model, JP J. Biostat. 18(2) (2021), 269-294. [13] L. Chen, H. Zheng and S. Wang, Prediction model of emergency mortality risk in patients with acute upper gastrointestinal bleeding: a retrospective study, Peer J. 9 (2021), e11656. doi: 10.7717/peerj.11656. [14] Y. Chen et al., Predicting the risk of sarcopenia in elderly patients with patellar fracture: development and assessment of a new predictive nomogram, Peer J. 8 (2020), e8793. doi: 10.7717/peerj.8793. [15] R. Tibshirani, Regression shrinkage and selection via the Lasso: a retrospective, J. R. Stat. Soc. Ser. B Stat. Methodol. 73(3) (2011), 273-282. doi: 10.1111/j.1467-9868.2011.00771.x. [16] H. Zou, The adaptive Lasso and its oracle properties, J. Amer. Statist. Assoc. 101(476) (2006), 1418-1429. doi: 10.1198/016214506000000735. [17] S. Tibshirani and H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer-Verlag, New York, 2009. [18] H. Zou and T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B Stat. Methodol. 67(2) (2005), 301-320. doi: 10.1111/j.1467-9868.2005.00503.x. [19] W. S. Cleveland and E. Grosse, Computational methods for local regression, Stat. Comput. 1(1) (1991), 47-62. doi: 10.1007/BF01890836. [20] L. N. Sanchez-Pinto, L. R. Venable, J. Fahrenbach and M. M. Churpek, Comparison of variable selection methods for clinical predictive modeling, Int. J. Med. Inf. 116 (2018), 10-17. doi: 10.1016/j.ijmedinf.2018.05.006. [21] F. Bagherzadeh-Khiabani, A tutorial on variable selection for clinical prediction models: feature selection methods in data mining could improve the results, J. Clin. Epidemiol. 71 (2016), 76-85. [22] G. S. Collins, J. B. Reitsma, D. G. Altman and K. G. M. Moons, Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement, BMJ 350 (2015), g7594-g7594. doi: 10.1136/bmj.g7594. [23] N. Meinshausen, Relaxed Lasso, Comput. Stat. Data Anal. 52(1) (2007), 374-393. doi: 10.1016/j.csda.2006.12.019. [24] C. J. Greenwood, G. J. Youssef, P. Letcher, et al., A comparison of penalized regression methods for informing the selection of predictive markers, Y. Kotozaki, ed., PLOS ONE 15(11) (2020), e0242730. doi: 10.1371/journal.pone.0242730. [25] M. M. Vasquez, C. Hu, D. J. Roe, Z. Chen, M. Halonen and S. Guerra, Least absolute shrinkage and selection operator type methods for the identification of serum biomarkers of overweight and obesity: simulation and application, BMC Med. Res. Methodol. 16(1) (2016), 154. doi: 10.1186/s12874-016-0254-8. [26] M. Pavlou, G. Ambler, S. Seaman, M. De Iorio and R. Z. Omar, Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events, Stat. Med. 35(7) (2016), 1159-1177. doi: 10.1002/sim.6782.
|