Keywords and phrases: survival analysis, cure rate estimation, parametric distributions, oral cancer data, MCMC algorithm.
Received: August 27, 2021; Accepted: October 6, 2021; Published: October 11, 2021
How to cite this article: T. Bindu, M. Kumaran and T. P. Sajith Babu, Comparison of mixture and non-mixture cure models with standard parametric distributions: application to oral cancer data, JP Journal of Biostatistics 18(3) (2021), 409-427. DOI: 10.17654/BS018010409
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
Reference:
[1] J. Berkson and R. P. Gage, Survival curve for patients following treatment, J. Amer. Statist. Assoc. 47(259) (1952), 501-515. [2] Binbing Yu, Ram C. Tiwari and K. Z. Cronin, Cure fraction estimation from the mixture cure models for grouped survival times, Stat. Med. 23 (2004), 1733-1747. [3] J. W. Boag, Maximum likelihood estimates of the proportion of patients cured by cancer, Journal of the Royal Statistical Society Series B 11(1) (1949), 15-53. [4] M. J. Bradburn, T. G. Clark, S. B. Love and T. Altman, Survival analysis Part II: multivariate data analysis - an introduction to concepts and methods, British Journal of Cancer 89 (2003), 431-436. [5] D. R. Cox, Regression models and life-tables, Journal of Royal Statistical Society Series B 34 (1972), 187-220. [6] Dianne Pulter and Hermann Brenner, Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis, Oncologist 15 (2010), 994-1001. [7] V. T. Farewell, The combined effect of breast cancer risk factors, Cancer 40(40) (1977), 931-936. [8] E. J. Gehan Freireich, E. Frei, E. Schroeder, L. R. Wolman, I. J. Anbari, R. Burgert, E. O. Mills, D. Pinkel, O. S. Moon Selawry, J. H. Gendel, B. R. Spurr, C. L. Storrs, R. F. Haurani, B. Hoogstraten and S. Lee, The effect of 6-mercaptopurine on the duration of steroid-induced remissions in acute leukemia; a model for evaluation of other potentially useful therapy, Blood 21 (1963), 699-716. [9] J. W. Gamel, I. W. McLean and S. H. Rosenberg, Proportion cured and mean log survival time as functions of tumor size, Stat. Med. 9 (1990), 999-1006. [10] Jalmar Carrasco, Edwin Ortega and Gauss M. Cordeiro, A generalized modified Weibull distribution for lifetime modeling, Comput. Statist. Data Anal. 53 (2008), 450-462. [11] D. G. Kleinbaum and M. Klein, Survival analysis, A Self-learning text, 3rd ed., Statistics for Biology and Health, Springer, New York, 2012. [12] Ross A. Maller and Xian Zhou, Survival Analysis with Long-term Survivors, Wiley Series in Probability and Statistics: Applied Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 1996. [13] Ming-Hui Chen, Joseph G. Ibrahim and Deba Jyothi Sinha, A new Bayesian model for survival data with a surviving fraction, J. Amer. Statist. Assoc. 94(447) (1999), 909-919. [14] G. S. Mudholkar and D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure rate data, IEEE Trans. on Reliability 2 (1993), 299-302. [15] Rameshwar D. Gupta and Debasis Kundu, Exponentiated exponential family: an alternative to gamma and Weibull distributions, Biometrical J. 43 (2001), 117-130. [16] J. M. G. Taylor, Semiparametric estimation in failure time mixture models methods, Biometrics 51 (1995), 899-907. [17] K. Yamaguchi, Accelerated failure-time regression models with a regression model of surviving fraction: an application to the analysis of permanent employment, Japan J. Amer. Statist. Assoc. 87 (1992), 284-292.
|