Keywords and phrases: multilattice, ideals, submultilattices, congruence relation, -fuzzy sets.
Received: February 21, 2021; Revised: April 9, 2021; Accepted: July 20, 2021; Published: August 10, 2021
How to cite this article: Pierre Carole Kengne, Daquin Cédric Awouafack, Blaise Blériot Koguep and Celestin Lele, -fuzzy ideals and -fuzzy congruences of multilattices, Advances in Fuzzy Sets and Systems 26(2) (2021), 145-174. DOI: 10.17654/FS026020145
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References
[1] M. Bakhshi and R. A. Borzooei, Lattice structure on fuzzy congruence relations of a hyper-groupoid, Inform. Sci. 177(16) (2007), 3305-3313. [2] M. Benado, Les ensembles partiellement ordonnés et le Théoréeme de raffinement descheier, II Théorie des multistructures, Czechoslovak Mathematical Journal 5(80) (1955), 308-344. [3] I. P. Cabrera, P. Cordero, G. Gutiérrez, J. Martinez and M. Ojeda-Aciego, On residuationin multilattices: Filters, congruences and homomorphisms, Fuzzy Sets Systems 234 (2014), 1-21. [4] I. P. Cabrera, P. Cordero, G. Gutiérrez, J. Martinez and M. Ojeda-Aciego, On congruences, ideals and homomorphisms over multilattices, EUROFUSE Workshop Preference Modelling and Decision Analysis, 2009, pp. 299-304. [5] I. P. Cabrera, P. Cordeo, G. Gutiérrez, J. Martinez and M. Ojeda-Aciego, Fuzzy congruence relations on nd-groupoids, Intl. J. Computer Mathematics 86 (2009), 1684-1695. [6] P. Cordero, G. Gutiérrez, J. Martinez, M. Ojeda-Aciego and I. Peñas, Congruence relationson multilattices, Intl. FLINS Conference on Computational Intelligence in Decision and Control, FLINS’08, 2008, pp. 139-144. [7] I. Jonhston, Some result involving multilattice ideals and distributivity, Discrete Mathematics 83(1) (1990), 27-35. [8] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174. [9] A. Kadji, C. Lele and M. Tonga, Fuzzy prime and maximal filters of residuated lattices, Soft Comput. 21 (2017), 1913-1922. [10] P. C. Kengne, B. B. Koguep, D. Akume and C. Lele, -fuzzy ideals of residuated lattices, Discussiones Mathematicae General Algebra and Application 39 (2019), 81-201. doi: 10.7151/dmgaa.1313. [11] W. J. Liu, On fuzzy invariant subgroup and fuzzy ideals, Fuzzy Sets and Systems 8 (1982), 133-139. [12] J. Medina, M. Ojeda-Aciego and J. Ruiz-Calvieno, Fuzzy logic programming via multilattices, Fuzzy Sets and Systems 158 (2007), 674-688. [13] J. Medina, M. Ojeda-Aciego and J. Ruiz-Calvieno, On the ideal semantics of multilattices-based logic programs, Fuzzy Sets and Systems 158(6) (2007), 674-688. [14] V. Murali, Fuzzy congruence relations, Fuzzy Sets and Systems 41(3) (1991), 359-369. [15] J. Rachůnek, O-idéaux des ensembles ordonnés, Acta Univ. Palack. Olomuk., Fac. Rer. Natur. 45(Math. 14) (1974), 77-81. [16] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517. [17] U. M. Swamy and D. Viswanadha Raju, Fuzzy ideals and congruences of lattices, Fuzzy Sets and Systems 95 (1998), 249-253. [18] Y. Tan, Fuzzy congruences on a regular semigroup, Fuzzy Sets and Systems 117(3) (2001), 399-408. [19] M. Tonga, Maximality on fuzzy filters of lattice, Afr. Mat. 22(2) (2011), 105-114. [20] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.
|