Keywords and phrases: two-phase flow, Vlasov equation, Navier-Stokes equations, particle method.
Received: June 8, 2021; Accepted: June 29, 2021; Published: September 23, 2021
How to cite this article: Rabé Bade and Hedia Chaker, Numerical Simulation of Tracking Suspended Particles in a Fluid, Advances and Applications in Fluid Mechanics 26(2) (2021), 123-140. DOI: 10.17654/FM026020123
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] R. Abgrall and R. Saurel, A simple method for compressible multiphase flows, SIAM J. Sci. Comput. 21(3) (1999), 1115-1145. [2] T. R. Auton, J. C. R. Hunt and M. Prud’Homme, The force exerted on a body in inviscid unsteady non-uniform rotating flow, J. Fluid Mech. 197 (1988), 241 257. [3] R. Badé, C. Chaker and M. Abdelwahed, Finite volume method to solve compressible Navier-Stokes system on unstructured mesh, International Journal of Applied Mathematics 28(1) (2015), 65-84. [4] C. Baranger and L. Desvillettes, Coupling Euler and Vlasov equations in the context of sprays: the local-in-time, classical solutions, J. Hyperbolic Differ. Equ. 3(1) (2006), 1-26. [5] A. Beaudoin, S. Huberson and E. Rivoalen, Méthode particulaire anisotrope pour des écoulements de fluide visqueux, C. R. Mecanique 332 (2004), 499-504. [6] K. Bernert, T. Frank, K. Pachler and H. Schneider, Numerical simulation of disperse multiphase flows with an application in power engineering, Int. J. Numer. Meth. Fluids 41 (2003), 1253-1271. [7] F. Bolley, Applications de transport optimal à des problèmes de limites dechamp moyen, Mathématiques Pures et Appliquées, Thése de Doctorat, Ecole Normale Supérieure de Lyon, Lyon (France), 2005. [8] F. Bunea, S. Houde, G. Ciocan, G. Oprina, G. Baran and I. Pincovschi, Aspects concerning the quality of aeration for environmental friendly turbines, IOP Conference Series: Earth and Environmental Science 12 (2010), 012035. [9] R. Caisch and G. Papanicolaou, Dynamic theory of suspension with Brownian effects, SIAM J. Appl. Math. 43 (1983), 885-906. [10] C. Cercignani, The Boltzmann equation and its application, Applied Mathematical Sciences, 64, Springer-Verlag, New York, 1988. [11] J. Chahed, Forces interfacials et turbulences dans les écoulements à bulles: Modélisation et études de cas de référence, Ecoulements Diphasique, Thése de Doctorat, Ecole Nationale d’Ingénieurs de Tunis, Tunis (Tunisie), 1999. [12] E. Climent, Dispertion de bulles et modifications du mouvement de laphase porteuse dans des écoulement tourbillonnaires, Thése de Doctorat, Institut National Polytechnique de Toulouse, Toulouse (France), 1996. [13] K. Domelevo and L. Sainsaulieu, A numerical method for the computation of dispersion of a cloud of particles by a turbulent gas flow field, Journal of Computational Physics 133 (1997), 256-278. [14] J. Fabre, J. Magnaudet and M. Rivero, Quelques résulats nouveaux concernant les forces exercées sur une inclusion sphérique par un écoulement accéléré, Comptes Rendus Académie des Sciences Paris Série II 312 (1991), 1499-1506. [15] K. Hamdache, Global existence and large time behaviour of solutions for Vlasov-Stokes equations, Japan Journal Indust. Appl. Math. 15 (1998), 51-74. [16] M. Ishii and T. Hibiki, Thermo-fluid Dynamic Theory of Two-phase Flow, Springer-Verlag, New York, 2011. [17] J. Massoni, R. Saurel, B. Nkonga and R. Abgrall, Some models and Eulerian methods for interface problems between compressible fluids with heat transfer, Int. J. Heat Mass Transf. 45(6) (2002), 1287-1307. [18] M. R. Maxel and J. J. Riley, Equation on motion for a small rigid sphere in a non-uniform flow, Phys. Fluids 26(4) (1983), 2883-2889. [19] A. Mellet and A. Vasseur, Global weak solution for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Math. Models Methods Appl. Sci. 17(7) (2007), 1039-1063. [20] A. Mellet and A. Vasseur, Asymptotic analysis for Valsov-Fokker-Planck/compressible Navier-Stokes system of equations, Comm. Math. Phys. 281(3) (2008), 573-596. [21] P. Villedieu and J. Hylkema, Une méthode particulaire aléatoire reposant sur une équation cinétique pour la simulation numérique des sprays denses de gouttelettes liquides, C. R. Acad. Sci. Paris Série I 325 (1997), 323-328. [22] G. B. Wallis, One Dimensional Two-phase Flows, McGraw-Hill, New-York, 1969. [23] F. A. Williams, Combustion Theory, 2nd ed., Benjamin Cummings, 1985.
|