Keywords and phrases: complete metric space, contractive mapping, fixed point, graph, inexact iterate, nonexpansive mapping.
Received: July 21, 2021; Accepted: September 3, 2021; Published: September 14, 2021
How to cite this article: Simeon Reich and Alexander J. Zaslavski, Convergence of inexact iterates of contractive mappings in metric spaces with graphs, JP Journal of Fixed Point Theory and Applications 16(2-3) (2021), 67-75. DOI: 10.17654/FP016230067
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application auxéquations intégrales, Fund. Math. 3 (1922), 133-181. [2] A. Betiuk-Pilarska and T. Domínguez Benavides, Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices, Pure Appl. Func. Anal. 1 (2016), 343-359. [3] D. Butnariu, S. Reich and A. J. Zaslavski, Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces, Fixed Point Theory and Its Applications, Yokohama Publ., Yokohama, 2006, pp. 11-32. [4] Y. Censor and M. Zaknoon, Algorithms and convergence results of projection methods for inconsistent feasibility problems: a review, Pure Appl. Func. Anal. 3 (2018), 565-586. [5] F. S. de Blasi and J. Myjak, Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach, C. R. Acad. Sci. Paris 283 (1976), 185-187. [6] F. S. de Blasi, J. Myjak, S. Reich and A. J. Zaslavski, Generic existence and approximation of fixed points for nonexpansive set-valued maps, Set-Valued and Variational Analysis 17 (2009) , 97-112. [7] M. Gabour, S. Reich and A. J. Zaslavski, A generic fixed point theorem, Indian J. Math. 56 (2014), 25-32. [8] A. Gibali, A new split inverse problem and an application to least intensity feasible solutions, Pure Appl. Funct. Anal. 2 (2017), 243-258. [9] A. Gibali, S. Reich and R. Zalas, Outer approximation methods for solving variational inequalities in Hilbert space, Optimization 66 (2017), 417-437. [10] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990. [11] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984. [12] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359-1373. [13] J. Jachymski, Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points, Pure Appl. Funct. Anal. 2 (2017), 657-666. [14] W. A. Kirk, Contraction mappings and extensions, Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, pp. 1-34. [15] R. Kubota, W. Takahashi and Y. Takeuchi, Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications, Pure Appl. Func. Anal. 1 (2016), 63-84. [16] A. M. Ostrowski, The round-off stability of iterations, Z. Angew. Math. Mech. 47 (1967), 77-81. [17] A. Petrusel, G. Petrusel and J. C. Yao, Multi-valued graph contraction principle with applications, Optimization 69 (2020), 1541-1556. [18] A. Petrusel, G. Petrusel and J. C. Yao, Graph contractions in vector-valued metric spaces and applications, Optimization 70 (2021), 763-775. [19] E. Pustylnyk, S. Reich and A. J. Zaslavski, Convergence to compact sets of inexact orbits of nonexpansive mappings in Banach and metric spaces, Fixed Point Theory and Applications 2008 (2008), 1-10. [20] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459-465. [21] S. Reich and A. J. Zaslavski, Well-posedness of fixed point problems, Far East J. Math. Sci., Special Volume (Functional Analysis and Its Applications), Part III (2001), 393-401. [22] S. Reich and A. J. Zaslavski, Generic aspects of metric fixed point theory, Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, pp. 557-575. [23] S. Reich and A. J. Zaslavski, Convergence to attractors under perturbations, Commun. Math. Anal. 10 (2011), 57-63. [24] S. Reich and A. J. Zaslavski, Genericity in Nonlinear Analysis, Developments in Mathematics, 34, Springer, New York, 2014. [25] W. Takahashi, The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces, Pure Appl. Funct. Anal. 2 (2017), 685-699. [26] W. Takahashi, A general iterative method for split common fixed point problems in Hilbert spaces and applications, Pure Appl. Funct. Anal. 3 (2018), 349-369. [27] A. J. Zaslavski, Approximate solutions of common fixed point problems, Springer Optimization and Its Applications, Springer, Cham, 2016. [28] A. J. Zaslavski, Algorithms for solving common fixed point problems, Springer Optimization and Its Applications, Springer, Cham, 2018.
|