Keywords and phrases: censoring, survival function, Kaplan-Meier estimate, log-rank test, weighted log-rank test.
Received: June 2, 2021; Accepted: August 16, 2021; Published: September 14, 2021
How to cite this article: M. Ramadurai and M. A. Ghouse Basha, Non-parametric statistical inference for the survival experiments, JP Journal of Biostatistics 18(3) (2021), 379-394. DOI: 10.17654/BS018010379
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
Reference:
[1] P. D. Allison, Survival Analysis Using SAS: A Practical Guide, 2nd ed., SAS Institute, 2010. [2] P. K. Andersen, Ø. Borgan, R. D. Gill and N. Keiding, Statistical Models Based on Counting Processes, Springer-Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-4348-9. [3] P. K. Andersen, Ø. Borgan, R. Gill, N. Keiding and O. Borgan, Linear nonparametric tests for comparison of counting processes, with applications to censored survival data, International Statistical Review/Revue Internationale de Statistique 50(3) (1982), 219-244. https://doi.org/10.2307/1402489. [4] D. Collett, Modelling Survival Data in Medical Research, Chapman & Hall/CRC, 2003. https://doi.org/10.1198/tech.2004.s817. [5] T. R. Fleming and D. P. Harrington, A class of hypothesis tests for one and two sample censored survival data, Comm. Statist. Theory Methods 10(8) (1981), 763-794. https://doi.org/10.1080/03610928108828073. [6] E. A. Gehan, A generalized Wilcoxon test for comparing arbitrarily singly-censored samples, Biometrika 52(1-2) (1965), 203-224. https://doi.org/10.1093/biomet/52.1-2.203. [7] D. Harrington, Linear Rank Tests in Survival Analysis, Encyclopedia of Biostatistics, John Wiley & Sons, Ltd., 2005. https://doi.org/10.1002/0470011815.b2a11047. [8] B. Jan, S. W. A. Shah, S. Shah and M. F. Qadir, Weighted Kaplan Meier estimation of survival function in heavy censoring, Pakistan J. Statist. 21(1) (2005), 55-63. [9] J. D. Kalbfleisch and R. L. Prentice, The Statistical Analysis of Failure Time Data, 2nd ed., John Wiley & Sons, 2002. https://doi.org/10.1002/9781118032985. [10] E. L. Kaplan and P. Meier, Nonparametric estimation from incomplete observations, J. Amer. Statist. Assoc. 53(282) (1958), 457-481. https://doi.org/10.1080/01621459.1958.10501452. [11] J. S. Kim and R. J. Dailey, Biostatistics for Oral Healthcare, Blackwell Munksgaard, 2008. https://doi.org/10.1002/9780470388303. [12] J. P. Klein, J. D. Rizzo, M. J. Zhang and N. Keiding, Statistical methods for the analysis and presentation of the results of bone marrow transplants. Part I: unadjusted analysis, Bone Marrow Transplantation 28 (2001), 909-915. https://doi.org/10.1038/sj.bmt.1703260. [13] D. G. Kleinbaum and M. Klein, Survival Analysis: A Self-learning Text, Springer, 2005. https://doi.org/10.1007/0-387-29150-4. [14] E. T. Lee, M. M. Desu and E. A. Gehan, A Monte Carlo study of the power of some two-sample tests, Biometrika 62(2) (1975), 425-432. https://doi.org/10.1093/biomet/62.2.425. [15] E. Lee and J. W. Wang, Statistical methods for survival data analysis, Public Health, John Wiley and Sons, Vol. 36, 2003. https://doi.org/10.1002/0471458546.ch1. [16] D. Machin, Y. B. Cheung and M. K. Parmar, Survival Analysis: A Practical Approach (Second), John Wiley and Sons, 2006. https://doi.org/10.1002/0470034572. [17] N. Mantel, Evaluation of survival data and two new rank order statistics arising in its consideration, Cancer Chemotherapy Reports. Part 1 50(3) (1966), 163-170. [18] R. Peto and J. Peto, Asymptotically efficient rank invariant test procedures, Journal of the Royal Statistical Society, Series A (General) 135(2) (1972), 185-198. https://doi.org/10.2307/2344317. [19] M. Ramadurai and M. A. Ghouse Basha, Non-parametric survival techniques with improved weight, Research & Reviews: A Journal of Bioinformatics 5(3) (2018), 19-29. [20] M. Ramadurai and C. Ponnuraja, Non-parametric estimation of the survival probability of children affected by TB Meningitis, Researchers World 2(2) (2011), 216-228. [21] R. E. Tarone and J. Ware, On distribution-free tests for equality of survival distributions, Biometrika 64(1) (1977), 156-160. https://doi.org/10.1093/biomet/64.1.156.
|