Keywords and phrases: chlorine, partial differential equation, approximate solution.
Received: July 2, 2021; Accepted: July 25, 2021; Published: August 7, 2021
How to cite this article: Yussri M. Mahrous, Accurate approximation for the chlorine transport in pipes, Advances in Differential Equations and Control Processes 25(1) (2021), 115-126. DOI: 10.17654/DE025010115
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] R. M. Clark, E. J. Reed and J. C. Hoff, Analysis of inactivation of Giardia lamblia by chlorine, ASCE J. Envir. Engr. 115 (1989), 80-90. [2] M. W. LeChevallier, C. Cawthon and R. G. Lee, Inactivation of biofilm bacteria, Appl. Envir. Microbiol. 54 (1988), 2492-2499. [3] B. F. Arnold and J. M. Colford, Treating water with chlorine at point-of-use to improve water quality and reduce child diarrhea in developing countries: a systematic review and meta-analysis, Am. J. Trop. Med. Hyg. 76 (2007), 354-364. [4] P. Biswas, C. Lu and R. M. Clark, A model for chlorine concentration decay in pipes, Wat. Res. 27(12) (1993), 1715-1724. [5] H.-D. Yeh, S.-B. Wen, Y.-C. Chang and C.-S. Lu, A new approximate solution for chlorine concentration decay in pipes, Wat. Res. 42(12) (2008), 2787-2795. [6] L. Monteiro, R. Viegas, D. Covas and J. Menaia, Assessment of current models ability to describe chlorine decay and appraisal of water spectroscopic data as model inputs, J. Enviro. Eng. 143(1) (2017), 04016071. doi:10.1061/(ASCE)EE.1943-7870.0001149. [7] Y. Zhao, Y. J. Yang, Y. Shao, J. Neal and T. Zhang, The dependence of chlorine decay and DBP formation kinetics on pipe flow properties in drinking water distribution, Water Research 141 (2018), 32-45. doi:10.1016/j. watres.2018.04.048. [8] I. Fisher, G. Kastl and A. Sathasivan, New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems, Water Research 125 (2017), 427-437. doi:10.1016/j.watres.2017.08.066. [9] O. Ozdemir and T. Buyruk, Effect of travel time and temperature on chlorine bulk decay in water supply pipes, J. Envir. Eng. 144(3) (2018), 04018002. doi:10.1061/(ASCE)EE.1943-7870.0001321. [10] R. P. Minaee, M. Afsharnia, A. Moghaddam, A. A. Ebrahimi, M. Askarishahi and M. Mokhtari, Calibration of water quality model for distribution networks using genetic algorithm, particle swarm optimization, and hybrid methods, MethodsX 6 (2019), 540-548. doi:10.1016/j.mex.2019.03.008. [11] R. P. Minaee, M. Afsharnia, A. Moghaddam, A. A. Ebrahimi, M. Askarishahi and M. Mokhtari, Wall decay coefficient estimation in a real-life drinking water distribution network, Water Resources Management 33(4) (2019), 1557-1569. doi:10.1007/s11269-019-02206-x. [12] L. Monteiro, J. Carneiro and D. I. C. Covas, Modelling chlorine wall decay in a full-scale water supply system, Urban Water Journal 17(8) (2020), 754-762. DOI:10.1080/1573062X.2020.1804595. [13] A. Moghaddam, M. Mokhtari, M. Afsharnia and R. P. Minaee, Simultaneous hydraulic and quality model calibration of a real-world water distribution network, Journal of Water Resources Planning and Management 146(6) (2020), 06020007. [14] R. Peirovi, A. Moghaddam, C. Miller, A. Moteallemi, M. Rouholamini and M. Moghbeli, Optimal chlorination station scheduling in an operating water distribution network using GANetXL, V. Naddeo, M. Balakrishnan and K. H. Choo, eds., Frontiers in Water-energy-nexus–Nature-based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability, Advances in Science, Technology and Innovation (IEREK Interdisciplinary Series for Sustainable Development), Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-13068-8-84.
|