Keywords and phrases: structure wood, temperatures, modeling, thermal resistance to heat, pyrolysis, experimental.
Received: April 19, 2021; Revised: May 24, 2021; Accepted: June 2, 2021; Published: July 31, 2021
How to cite this article: A. Mourabit, K. Gueraoui, M. Cherraj, A. Echchikhi, S. Men-La-Yakhaf and M. Taibi, Experimental and theoretical analyses of the thermal behavior of the wood used in morocco as construction item, JP Journal of Heat and Mass Transfer 23(2) (2021), 279-292. DOI: 10.17654/HM023020279
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] E. E. Thybring, L. G. Thygesen and I. Burgert, Hydroxyl accessibility in wood cell walls as affected by drying and rewetting procedures, Cellulose 24 (2017), 2375-2384. [2] W. Gan et al., Dense, self-formed char layer enables a fire-retardant wood structural material, Adv. Funct. Mater. 29 (2019). https://doi.org/10.1002/adfm.201807444. [3] M. Frey, L. Schneider, T. Masania, T. Keplinger and I. Burgert, Delignified wood-polymer interpenetrating composites exceeding the rule of mixtures, ACS Appl. Mater. Interfaces 11 (2019), 35305-35311. [4] W. Gan et al., Single-digit-micrometer thickness wood speaker, Nat. Commun. 10 (2019), 5084. [5] J. Song et al., Processing bulk natural wood into a high-performance structural material, Nature 554 (2018), 224-228. [6] X. Li, Y. J. Shang, Z. L. Chen, X. F. Chen, Y. Niu, M. Yang and Y. Zhang, Study of spontaneous combustion mechanism and heat stability of sulfide minerals powder based on thermal analysis, Powder Technology 309 (2017), 68-73. [7] A. Tribot, G. Amer, M. A. Alio, H. de Baynast, C. Delattre, A. Pons, J.-D. Mathias, J.-M. Callois, Ch. Vial, P. Michaud and C.-G. Dussap, Wood-lignin: supply, extraction processes and use as bio-based material, Eur. Polym. J. 112 (2019), 228-240. doi: 10.1016/j.eurpolymj.2019.01.007. [8] B. D. Krezovic, M. G. Miljkovic, S. T. Stojanovic, S. J. Najman, J. M. Filipovic and S. Lj. Tomic, Structural, thermal, mechanical, swelling, drug release, antibacterial and cytotoxic properties of P(HEA/IA)/PVP semi-IPN hydrogels, Chem. Eng. Res. Des. 121 (2017), 368-380. [9] O. Atmani, B. Abbès, F. Abbès, Y. M. Li and S. Batkam, Identification of a thermo-elasto-viscoplastic behavior law for the simulation of thermoforming of high impact polystyrene, AIP Conference Proceedings 1960 (2018), 120003-1-120003-6. [10] D. K. Shen, M. X. Fang, Z. Y. Luo and K. F. Cen, Modeling pyrolysis of wet wood under external heat flux, Fire Safety Journal 42 (2007), 210-217. [11] A. Menis, Fire resistance of laminated veneer lumber (LVL) and cross- laminated timber (XLAM) elements, Ph.D. Thesis, Università degli Studi di Cagliari, Italy, 2012. [12] V. D. Thi, M. Khelifa, M. El Ganaoui and Y. Rogaume, Finite element modelling of the pyrolysis of wet wood subjected to fire, Fire Safety J. 81 (2016), 85-91. [13] C. D. Blasi, Analysis of convection and secondary reaction effects within porous solid fuels undergoing pyrolysis, Combust. Sci. Tech. 90 (1993), 315-340. [14] S. Schnabl, I. Planinc, G. Turk and S. Srpcic, Fire analysis of timber composite beams with interlayer slip, Fire Safety J. 44 (2009), 770-778. [15] C. Erchinger, A. Frangi and M. Fontana, Fire design of steel-to-timber dowelled connections, Eng. Struct. 32 (2010), 580-589. [16] R. Bilbao, J. F. Mastral, J. Ceamanous and M. E. Aldea, Modeling of the pyrolysis of wet wood, J. Anal. Appl. Pyrol. 36 (1996), 81-97. [17] R. M. Knudson and A. P. Schniewind, Performance of structural wood members exposed to fire, Forest Prod. J. 25(2) (1975), 23-32. [18] B. Fredlund, Modelling of heat and mass transfer in wood structures during fire, Fire Safety J. 20 (1993), 39-69. [19] A. Frangi and M. Fontana, Charring rates and temperature profiles of wood sections, Fire Mater. 27(2) (2003), 91-102. [20] S. Schnabl, G. Turk and I. Planinc, Buckling of timber columns exposed to fire, Fire Safety J. 46(7) (2011), 431-439. [21] P. Keerthan and M. Mahendran, Numerical studies of gypsum plasterboard panels under standard fire conditions, Fire Safety J. 53 (2012), 105-119. [22] S. Men-La-Yakhaf, K. Gueraoui and M. Driouich, New numerical and mathematical code reactive mass transfer and heat storage facilities of argan waste, Advanced Studies in Theoretical Physics 8(10) (2014), 485-498. [23] S. Men-La-Yakhaf, K. Gueraoui, A. Maaouni and M. Driouich, Numerical and mathematical modeling of reactive mass transfer and heat storage installations of argan waste, International Review of Mechanical Engineering (IREME) 8(1) (2014), 236-240. [24] B. Moghtaderi, The state-of-the-art in pyrolysis modeling of lingo cellulosic solid fuels, Fire Mater. 30 (2006), 1-34. [25] J. Larfeldt, B. Leckner and M. C. Melaaen, Modeling and measurements of the pyrolysis of large wood particles, Fuel 79 (2000), 1637-1643. [26] S. S. Alves and J. L. Figueiredo, A model for pyrolysis of wetwood, Chemical Engineering Science 44 (1989), 2861-2869. [27] A. Galgano and C. Di Blasi, Modeling the propagation of drying and decomposition fronts in wood, Combustion and Flame 139 (2004), 16-27. [28] A. Mourabit, K. Gueraoui, M. Cherraj, S. Men-La-Yakhaf and M. Taibi, The thermal behavior of the wood under fire exposure modelling, JP Journal of Heat and Mass Transfer 23(2) (2021), 263-278.
|