Keywords and phrases: structure wood, fire safety, modelling, thermal resistance to heat, pyrolysis, finite volume.
Received: April 19, 2021; Revised: May 24, 2021; Accepted: May 29, 2021; Published: July 31, 2021
How to cite this article: A. Mourabit, K. Gueraoui, M. Cherraj, S. Men-La-Yakhaf and M. Taibi, The thermal behavior of the wood under fire exposure modelling, JP Journal of Heat and Mass Transfer 23(2) (2021), 263-278. DOI: 10.17654/HM023020263
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] E. E. Thybring, L. G. Thygesen and I. Burgert, Hydroxyl accessibility in wood cell walls as affected by drying and rewetting procedures, Cellulose 24 (2017), 2375-2384. [2] W. Gan et al., Dense, self-formed char layer enables a fire-retardant wood structural material, Adv. Funct. Mater. 29 (2019). https://doi.org/10.1002/adfm.201807444. [3] M. Frey, L. Schneider, T. Masania, T. Keplinger and I. Burgert, Delignified wood-polymer interpenetrating composites exceeding the rule of mixtures, ACS Appl. Mater. Interfaces 11 (2019), 35305-35311. [4] W. Gan et al., Single-digit-micrometer thickness wood speaker, Nat. Commun. 10 (2019), 5084. [5] J. Song et al., Processing bulk natural wood into a high-performance structural material, Nature 554 (2018), 224-228. [6] X. Li, Y. J. Shang, Z. L. Chen, X. F. Chen, Y. Niu, M. Yang and Y. Zhang, Study of spontaneous combustion mechanism and heat stability of sulfide minerals powder based on thermal analysis, Powder Technology 309 (2017), 68-73. [7] A. Tribot, G. Amer, M. A. Alio, H. de Baynast, C. Delattre, A. Pons, J.-D. Mathias, J.-M. Callois, Ch. Vial, P. Michaud and C.-G. Dussap, Wood-lignin: supply, extraction processes and use as bio-based material, Eur. Polym. J. 112 (2019), 228-240. doi: 10.1016/j.eurpolymj. [8] B. D. Krezovic, M. G. Miljkovic, S. T. Stojanovic, S. J. Najman, J. M. Filipovic and S. Lj. Tomic, Structural, thermal, mechanical, swelling, drug release, antibacterial and cytotoxic properties of P(HEA/IA)/PVP semi-IPN hydrogels, Chem. Eng. Res. Des. 121 (2017), 368-380. [9] O. Atmani, B. Abbès, F. Abbès, Y. M. Li and S. Batkam, Identification of a thermo-elasto-viscoplastic behavior law for the simulation of thermoforming of high impact polystyrene, AIP Conference Proceedings 1960 (2018), 120003-1-120003-6. [10] D. K. Shen, M. X. Fang, Z. Y. Luo and K. F. Cen, Modeling pyrolysis of wet wood under external heat flux, Fire Safety Journal 42 (2007), 210-217. [11] A. Menis, Fire resistance of Laminated Veneer Lumber (LVL) and Cross- Laminated Timber (XLAM) elements, Ph.D. Thesis, Università degli Studi di Cagliari, Italy, 2012. [12] V. D. Thi, M. Khelifa, M. El Ganaoui and Y. Rogaume, Finite element modelling of the pyrolysis of wet wood subjected to fire, Fire Safety J. 81 (2016), 85-91. [13] C. D. Blasi, Analysis of convection and secondary reaction effects within porous solid fuels undergoing pyrolysis, Combust. Sci. Tech. 90 (1993), 315-340. [14] S. Schnabl, I. Planinc, G. Turk and S. Srpcic, Fire analysis of timber composite beams with interlayer slip, Fire Safety J. 44 (2009), 770-778. [15] C. Erchinger, A. Frangi and M. Fontana, Fire design of steel-to-timber dowelled connections, Eng. Struct. 32 (2010), 580-589. [16] R. Bilbao, J. F. Mastral, J. Ceamanous and M. E. Aldea, Modeling of the pyrolysis of wet wood, J. Anal. Appl. Pyrol. 36 (1996), 81-97. [17] R. M. Knudson and A. P. Schniewind, Performance of structural wood members exposed to fire, Forest Prod. J. 25(2) (1975), 23-32. [18] B. Fredlund, Modelling of heat and mass transfer in wood structures during fire, Fire Safety J. 20 (1993), 39-69. [19] A. Frangi and M. Fontana, Charring rates and temperature profiles of wood sections, Fire Mater. 27(2) (2003), 91-102. [20] S. Schnabl, G. Turk and I. Planinc, Buckling of timber columns exposed to fire, Fire Safety J. 46(7) (2011), 431-439. [21] P. Keerthan and M. Mahendran, Numerical studies of gypsum plasterboard panels under standard fire conditions, Fire Safety J. 53 (2012), 105-119. [22] S. Men-La-Yakhaf, K. Gueraoui and M. Driouich, New numerical and mathematical code reactive mass transfer and heat storage facilities of argan waste, Advanced Studies in Theoretical Physics 8(10) (2014), 485-498. [23] S. Men-La-Yakhaf, K. Gueraoui, A. Maaouni and M. Driouich, Numerical and mathematical modeling of reactive mass transfer and heat storage installations of argan waste, International Review of Mechanical Engineering (IREME) 8(1) (2014), 236-240. [24] B. Moghtaderi, The state-of-the-art in pyrolysis modeling of lingo cellulosic solid fuels, Fire Mater. 30 (2006), 1-34. [25] J. Larfeldt, B. Leckner and M. C. Melaaen, Modeling and measurements of the pyrolysis of large wood particles, Fuel 79 (2000), 1637-1643. [26] S. S. Alves and J. L. Figueiredo, A model for pyrolysis of wetwood, Chemical Engineering Science 44 (1989), 2861-2869. [27] A. Galgano and C. Di Blasi, Modeling the propagation of drying and decomposition fronts in wood, Combustion and Flame 139 (2004), 16-27. [28] J. Norén, Load-bearing capacity of nailed joints exposed to fire, Fire and Materials 20(3) (1996), 133-145.
|