Keywords and phrases: beam equation, semigroup theory, asymptotic analysis, Riesz basis, exponential stability.
Received: May 19, 2021; Accepted: June 12, 2021; Published: July 27, 2021
How to cite this article: Diop Fatou N, Kouassi A. A. Hermith, Touré K. Augustin and Koua B. Jean-Claude, Numerical Approximation of the Spectrum for a Flexible Euler-Bernoulli Beams With a Force Control in Position and Velocity, International Journal of Numerical Methods and Applications 20(2) (2021), 77-94. DOI: 10.17654/NM020020077
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] C. Bernardi, Y. Maday and F. Rapette-Gabelli, Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématique et Applications, 45, Springer, Paris, 2004. [2] Haim Brezis, Analyse fonctionnelle, théorie et applications, Masson, Paris, 1983. [3] P. G. Ciarlet, Introduction à l’analyse numérique matricielle et à l’optimisation, Dunod, 1998. [4] P. A. Raviart and J. M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles, Dunod, 1998. [5] P. G. Ciarlet, The Finite Element Methods, North-Holland, Amsterdam, 1978. [6] P. Rideau, Controle d’un assemblage de poutres flexibles par des capteurs actionneurs ponctuels : étude du spectre du système, Thèses de Doctorat, École Nationale Supérieure des Mines de Paris, 1985. [7] G. D. Birkhoff, Boundary value and expansion problems of ordinary linear differential equations, Trans. Amer. Math. Soc. 9 (1908), 373-395. [8] B. Z. Guo and J. M. Wang, The well-posedness and stability of a beam equation with conjugate variables assigned at the same boundary point, IEEE Transaction on Automatic Control 50(12) (2005), 2087-2093. [9] F. Z. Saouri, Stabilisation de quelques systèmes élastiques, Analyse spectrale et comportement asymptotique, Thèses de doctorat, Université Henri Poincaré I, 2000. [10] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations Springer-Verlag, New York, 1983. [11] R. E. Langer, On the zeros of exponential sums and integrals, Bull. Amer. Math Soc. 37 (1931), 213-233. [12] Toure K. Augustin, Mensah E. Patrice and Taha M. Mathurin, Riesz basis property and exponential stability of a flexible Euler-Bernoulli beam with a force control in position and velocity, Far East Journal of Applied Mathematics 69 (2012), 29-56. [13] Toure K. Augustin, Koua B. Jean Claude and Diop Fatou N., Riesz basis property and exponential stability of a flexible Euler-Bernoulli beam with a force control in rotation and velocity rotation, Far East Journal of Applied Mathematics 99 (2016), 33-60. [14] Toure K. Augustin, Koua B. Jean-Claude and Diop Fatou N., Riesz basis property and stability of a beam equation with conjugate variables assigned at the same boundary point, Global Journal of Pure and Applied Mathematics 12(4) (2016), 2793-2808. [15] Fatou N. Diop, Hermith A. A. Kouassi, Augustin K. Touré and Jean Claude B. Koua, Numerical approximation of the spectrum for a flexible Euler-Bernoulli beam with a force in rotation and velocity rotation, Advances in Mathematics: Scientific Journal 9 (2020), 305-320.
|