Keywords and phrases: parametric model, AIC, BIC.
Received: March 23, 2021; Revised: May 13, 2021; Accepted: June 15, 2021; Published: June 28, 2021
How to cite this article: Swapan Bhattacharjee and Surobhi Deka, Application of parametric models to a survival analysis of breast cancer patients of North-east India, JP Journal of Biostatistics 18(2) (2021), 295-303. DOI: 10.17654/JB018020295
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
Reference:
[1] H. Akaike, A new look at the statistical model identification, IEEE Trans. Automatic Control 19 (1974), 716-723. [2] Q. Gong and L. Fang, Comparison of different parametric proportional hazards models for interval-censored data: a simulation study, Contemporary Clinical Trials 36 (2013), 276-283. [3] D. Habibi, M. Rafiei, A. Chehrei, Z. Shayan and S. Tafaqodi, Comparison of survival models for analyzing prognostic factors in gastric cancer patients, Asian Pac. J. Cancer Prev. 27 (2018), 749-753. [4] D. W. Hosmer and S. Lemeshow, Applied Survival Analysis: Regression Modeling of Time to Event Data, Wiley, New York, 1999. [5] S. H. Teshnizi and S. M. T. Ayatollahi, Comparison of Cox regression and parametric models: application for assessment of survival of pediatric cases of acute leukemia in southern Iran, Asian Pac. J. Cancer Prev. 18 (2017), 981-985. [6] S. K. Marvasti, S. Rimaz, J. Abolghasemi and I. Heydari, Comparing of Cox model and parametric models in analysis of effective factors on event time of neuropathy in patients with type 2 diabetes, J. Res. Med. Sci. 22 (2017), 1-8. [7] E. Khaksar, M. Askarishahi, S. Hekmatimoghaddam and H. V. Ardakani, Cox regression and parametric models: comparison of how they determine factors influencing survival of patients with non-small cell lung carcinoma, Asian Pac. J. Cancer Prev. 18 (2017), 3389-3393. [8] H. Li, Survival analysis for a breast cancer data set, Advances in Breast Cancer Research 6 (2017), 1-15. [9] S. Malvia, S. A. Bagadi, U. S. Dubey and S. Saxena, Epidemiology of breast cancer in Indian women, Asia Pac. J. Clin. Oncol. 13 (2017), 289-295. [10] A. C. Mensah, D. A. Frimpong and E. Okyere, Comparative analysis of parametric models on survival of breast cancer patients in Ghana, International Journal of Innovation in Science and Mathematics 2 (2014), 96-102. [11] M. Montaseri, J. Y. Charati and F. Espahbodi, Application of parametric models to a survival analysis of hemodialysis patients, Nephrourol Mon. 8 (2016), 1-6. [12] P. Ngaihte, E. Zomawia and I. Kaushik, Cancer in the North East India: where we are and what needs to be done?, Indian Journal of Public Health 63 (2019), 251-253. [13] M. A. Pourhoseingholi, E. Hajizadeh, B. M. Dehkordi, A. Safaee, A. Abadi and M. R. Zali, Comparing Cox regression and parametric models for survival of patients with gastric carcinoma, Asian Pacific J. Cancer Pre. 8 (2007), 412-416. [14] G. Schwarz, Estimating the dimension of a model, Ann. Stat. 6 (1978), 461-464. [15] L. Subramanian, V. U. Salini, H. Anandan and U. Insuvai, Breast cancer awareness in South India, Int. J. Sci. Stud. 6 (2018), 39-42. [16] E. A. Syahila et al., Analysis of survival data in breast cancer patients by using different parametric models, J. Phys.: Conf. Ser. 890 (2017), 1-6. [17] V. Vallinayagam et al., Parametric regression models in the analysis of breast cancer survival data, International Journal of Science and Technology 3 (2014), 163-167. [18] B. B. Yeole and A. P. Kurkure, An epidemiological assessment of increasing incidence and trends in breast cancer in Mumbai and other sites in India, during the last two decades, Asian Pac. J. Cancer Prev. 4 (2003), 51-56.
|