Keywords and phrases: clinical prediction model, calibration index, integrated calibration index, variable selection.
Received: May 14, 2021; Accepted: June 17, 2021; Published: June 28, 2021
How to cite this article: Yuki Shiko, Ikumi Takashima, Ippeita Dan and Yohei Kawasaki, Comparison of variable selection methods for optimizing the calibration of clinical prediction model, JP Journal of Biostatistics 18(2) (2021), 269-294. DOI: 10.17654/JB018020269
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
Reference:
[1] E. Steyerberg, Clinical Prediction Models: A Practical Approach to Development, Validation and Updating, New York: Springer-Verlag New York, 2019. [2] F. E. H. Jr, K. L. Lee and D. B. Mark, Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors, Published online (1996), 361-387. doi: https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168> 3.0.CO;2-4 [3] F. Harrell Jr., Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, New York: Springer-Verlag New York, 2015. [4] G. S. Collins, J. A. de Groot and S. Dutton, et al., External validation of multivariable prediction models: a systematic review of methodological conduct and reporting, BMC Med Res Methodol. 14(1) (2014), 40. doi:10.1186/1471-2288-14-40 [5] G. S. Collins and D. G. Altman, Predicting the 10 year risk of cardiovascular disease in the United Kingdom: independent and external validation of an updated version of QRISK 2, BMJ 344(1) (2012), e4181-e4181. doi:10.1136/bmj.e4181 [6] P. C. Austin and E. W. Steyerberg, The Integrated Calibration Index (ICI) and related metrics for quantifying the calibration of logistic regression models, Stat Med. 38(21) (2019), 4051-4065. doi:10.1002/sim.8281 [7] G. W. Brier, Verification of Fore Casts Express Ed in terms, Mon Weather Rev. 78(1) (1950), 1-3. [8] D. W. Hosmer and S. Lemesbow, Goodness of fit tests for the multiple logistic regression model, Commun Stat-Theory Methods 9(10) (1980), 1043-1069. doi:10.1080/03610928008827941 [9] Y. Wang, L. Li and C. Dang, Calibrating Classification Probabilities with Shape-Restricted Polynomial Regression, IEEE Trans Pattern Anal Mach Intell. 41(8) (2019), 1813-1827. doi:10.1109/TPAMI.2019.2895794 [10] Y. Huang, W. Li, F. Macheret, R. A. Gabriel and L. Ohno-Machado, A tutorial on calibration measurements and calibration models for clinical prediction models, J Am Med Inform Assoc. 27(4) (2020), 621-633. doi:10.1093/jamia/ocz228 [11] D. R. Cox, Two Further Applications of a Model for Binary Regression, Biometrika 45(3/4) (2021), 562-565. doi:https://doi.org/10.2307/2333203 [12] D. W. Hosmer, T. Hosmer, S. L. Cessie and S. Lemeshow, A Comparison of Goodness-of-1-fit tests for the logistic regression model, Stat Med. 16(9) (1997), 965-980. doi:https://doi.org/10.1002/(SICI)1097-0258(19970515)16:9<965::AIDSIM509>3.0.CO;2-O [13] J. Wang, C. Li, J. Li, et al., Development and internal validation of risk prediction model of metabolic syndrome in oil workers, BMC Public Health. 20(1) (2020), 1828. doi:10.1186/s12889-020-09921-w [14] S. Hong, S. Lee, J. Lee, W. C. Cha and K. Kim, Prediction of Cardiac Arrest in the Emergency Department Based on Machine Learning and Sequential Characteristics: Model Development and Retrospective Clinical Validation Study, JMIR Med Inform. 8(8) (2020), e15932. doi:10.2196/15932 [15] Y. Chen, Y. Cai, X. Kang, et al., Predicting the risk of sarcopenia in elderly patients with patellar fracture: development and assessment of a new predictive nomogram, Peer J. 8 (2020), e8793. doi:10.7717/peerj.8793 [16] L. Sun, J. Shang, J. Xiao and Z. Zhao, Development and validation of a predictive model for end-stage renal disease risk in patients with diabetic nephropathy confirmed by renal biopsy, Peer J. 8 (2020), e8499. doi:10.7717/peerj.8499 [17] S. B. Kotsiantis, Decision trees: a recent overview, Artif Intell Rev. 39 (2013), 261-283. [18] R. Tibshirani, Regression Shrinkage and Selection Via the Lasso, J R Stat Soc Ser B Methodol. 58(1) (1996), 267-288. doi:10.1111/j.2517-6161.1996.tb02080.x [19] W. S. Cleveland and E. Grosse, Computational methods for local regression, Stat Comput. 1(1) (1991), 47-62. doi:10.1007/BF01890836 [20] P. C. Austin and E. W. Steyerberg, Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers, Stat Med. 33(3) (2014), 517-535. doi:10.1002/sim.5941 [21] P. Royston, K. G. Moons, A. D. Altman and Y. Vergouwe, Prognosis and prognostic research: Developing a prognostic model, BMJ 338 (2009), b604. doi: https://doi.org/10.1136/bmj.b604 [22] K. G. M. Moons, D. G. Altman, J. B. Reitsma, et al., Transparent reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and Elaboration, Ann Intern Med. 162(1) (2015), W1. doi:10.7326/M14-0698 [23] F. Bagherzadeh-Khiabani, A tutorial on variable selection for clinical prediction models: feature selection methods in data mining could improve the results, J Clin Epidemiol. Published online 2016:10. [24] K. G. M. Moons, A. P. Kengne, M. Woodward, et al., Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker, Heart 98(9) (2012), 683-690. doi:10.1136/heartjnl-2011-301246 [25] N. Mantel, Why Stepdown Procedures in Variable Selection, Technometrics 12(3) (1970), 621-625. doi:10.1080/00401706.1970.10488701 [26] T. van der Ploeg and E. W. Steyerberg, Feature selection and validated predictive performance in the domain of Legionella pneumophila: a comparative study, BMC Res Notes 9(1) (2016), 147. doi:10.1186/s13104-016-1945-2 [27] L. N. Sanchez-Pinto, L. R. Venable, J. Fahrenbach and M. M. Churpek, Comparison of variable selection methods for clinical predictive modeling, Int. J Med Inf. 116 (2018), 10-17. doi:10.1016/j.ijmedinf.2018.05.006 [28] Z. Bursac, C. H. Gauss, D. K. Williams and D. W. Hosmer, Purposeful selection of variables in logistic regression, Source Code Biol Med. 3(1) (2008), 17. doi:10.1186/1751-0473-3-17 [29] T. van der Ploeg, P. C. Austin and E. W. Steyerberg, Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints, BMC Med Res Methodol. 14(1) (2014), 137. doi:10.1186/1471-2288-14-137
|