Keywords and phrases: estimation, risk measures, heavy-tailed distribution, tail index, extreme quantiles, bias reduction.
Received: February 1, 2021; Accepted: April 8, 2021; Published: June 21, 2021
How to cite this article: El Hadji Deme, Mouhamad M. Allaya, Siradhi Deme, Hamza Dhaker and Ali Souleyman Dabye, Estimation of risk measures from heavy tailed distributions, Far East Journal of Theoretical Statistics 62(1) (2021), 35-80. DOI: 10.17654/TS062010035
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] P. Artzner, F. Delbaen, J. M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance 9 (1999), 203-228. [2] J. Beirlant, G. Dierckx, M. Goegebeur and G. Matthys, Tail index estimation and exponential regression model, Extremes 2 (1999), 177-200. [3] J. Beirlant, G. Dierckx, A. Guillou and C. Starica, On exponential representations of log-spacings of extreme order statistics, Extremes 5 (2002), 157-180. [4] J. Beirlant, F. Figueiredo, I. Gomes and B. Vandewalle, Improved reduced-bias tail index and quantile estimators, Journal of Statistical Planning and Inference 138(6) (2008), 1851-1870. [5] A. Balkema and L. de Haan, Limit laws of order statistics, Colloquia Math. Soc. J. Bolyai, 11, Limit Theorems of Probability, P. Révész, ed., Amsterdam: North-Holland, 1975, pp. 17-22. [6] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1987. [7] B. Brahimi, D. Meraghni and A. Necir, Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses, Insurance: Mathematics and Economics 9(3) (2011), 325-334. [8] B. Brahim, D. Meraghni, A. Necir and D. Yahia, A bias-reduced estimator for the mean of a heavy-tailed distribution with an infinite, 2012. https://arxiv.org/abs/1201.1578 [9] B. Brahimi, F. Meddi and A. Necir, Bias-corrected estimation in distortion risk premiums for heavy-tailed losses, Afrika Statistika 7 (2012), 474-490. [10] V. Brazauskas, B. Jones, M. Puri and R. Zitikis, Estimating conditional tail expectation with actuarial applications in view, Journal of Statistical Planning and Inference 138 (2008) 3590-3604. [11] M. Centeno and Andrade e Silva, Applying the proportional hazard premium calculation principle, Astin Bulletin 3 (2005), 409-425. [12] S. Cosörgő, P. Deheuvels and D.M. Mason, Kernel estimates of the tail index of a distribution, Annals of Statistics 13 (1985), 1050-1077. [13] M. Csörgo, S. Csörgo, L. Horváth and D. M. Mason, Weighted empirical and quantile processes, Annals of Probability 14 (1986), 31-85. [14] L. de Haan and A. Ferreira, Extreme Value Theory: An Introduction, Springer, 2006. [15] E. Deme, S. Girard and A. Guillou, Reduced-bias estimator of the proportional hazard premium for heavy-tailed distributions, Insurance: Mathematics and Economics 52 (2013), 550-559. [16] E. H. Deme, S. Girard and A. Guillou, Reduced-biased estimators of the conditional tail expectation for heavy-tailed distributions, Mathematical Statistics and Limit Theorems, Springer, 2015, pp. 105-123. [17] M. Denuit and A. Charpentier, Mathématiques de l’assurance non-vie : Principes fondamentaux de théorie du risque, Tome I, Economica, Paris, 2004. [18] A. Feuerverger and P. Hall, Estimating a tail exponent by modelling departure from a Pareto distribution, Annals of Statistics 27 (1999), 760-781. [19] R. Fisher and L. Tippet, Limiting forms of the frequency distribution of the largest or smallest member of a sample, Proceedings of the Cambridge Philosophical Society 24 (1928), 180-190. [20] J. L. Geluk and L. de Haan, Regular Variation, Extensions and Tauberian Theorems, CWI Tracts, vol. 40, Stichting Mathematisch Centrum, Amsterdam, The Netherlands, 1987. [21] M. I. Gomes and M. Martins, Asymptotically unbiased estimators of the tail index based on external estimation of the second order parameter, Extremes 5 (2002), 5-31. [22] M. I. Gomes and D. Pestana, A sturdy reduced-bias extreme quantile (VaR) estimator, Journal of the American Statistical Association 102 (2007), 280-292. [23] M. J. Goovaerts, F. de Vlyder and J. Haezendonck, Insurance Premiums: Theory and Applications, North Holland, Amsterdam, 1984. [24] B. M. Hill, A simple approach to inference about the tail of a distribution, Annals of Statistics 3 (1975), 1136-1174. [25] B. L. Jones and R. Zitikis, Empirical estimation of risk premiums and related quantities, North American Actuarial Journal 7 (2003), 44-54. [26] B. L. Jones and R. Zitikis, Testing for the order risk measures: application of L-statistics in actuarial science, Metron 63 (2005), 193-211. [27] B. L. Jones and R. Zitikis, Risk measures, distortion parameters and their empirical estimation, Insurance: Mathematics and Economics 41(2) (2007), 279-297. [28] D. Li, L. Peng and J. Yang, Bias reduction for high quantile, J. Statist. Planning Inference 140(9) (2010), 2439-2441. [29] D. B. Madan and W. Schoutens, Conic Financial markets and corporate finance, 2010. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1547022 [30] G. Matthys, E. Delafosse, A. Guillou and J. Beirlant, Estimating catastrophic quantile levels for heavy-tailed distributions, Insurance: Mathematic and Economics 34 (2004), 517-537. [31] G. Matthys and J. Beirlant, Estimating the extreme value index and high quantiles with exponential regression models, Statistica Sinica 13 (2003) 853-880. [32] D. M. Mason, Laws of the large numbers for sums of extreme values, Annals of Probability 10 (1982), 259-297. [33] A. Necir and K. Boukhetala, Estimating the risk adjusted premium of the largest claims reinsurance covers, Proceeding in Computational Statistics, Jaromir Antoch, ed., Physica, Heidelberg, 2004, pp. 1577-1584. [34] A. Necir, D. Meraghni and F. Meddi, Statistical estimate of the proportional hazard premium of loss, Scandinavian Actuarial Journal 3 (2007), 147-161. [35] A. Necir and D. Meraghni, Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts, Insurance: Mathematics and Economics 45 (2009), 49-58. [36] A. Necir, A. Rassoul and R. Zitikis, Estimating the conditional tail expectation in the case of heavy-tailed losses, Journal of Probability and Statistics 2010, Art. ID 596839, 17 pp. [37] A. Necir, D. Meraghni and F. Meddi, Statistical estimate of the proportional hazard premium of loss, Scandinavian Actuarial Journal 3 (2007), 147-161. [38] L. Peng, Estimating the mean of a heavy tailed distribution, Statist. Probab. Lett. 52(3) (2001), 255-264. [39] R. D. Reiss and M. Thomas, Statistical Analysis of Extreme Values: with Applications to Insurance, Finance, Hydrology and Other Fields, 3rd ed., Birkhäuser, 2007. [40] G. Shorack and J. Wellner, Empirical Processes with Applications to Statistics, John Wiley Sons, New York, 1986. [41] B. Vandewalle and J. Beirlant, On univariate extreme value statistics and the estimation of reinsurance premiums, Insurance: Mathematics and Economics 38 (2006), 441-459. [42] S. S. Wang, Premium calculation by transforming the layer premium density, Astin Bulletin 26 (1996), 71-92. [43] S. Wang, Insurance pricing and increased limits ratemaking by proportional hazard transforms, Insurance: Mathematics and Economics (17) (1995), 43-54. [44] I. Weissman, Estimation of parameters and larges quantiles based on the k largest observations, Journal of American Statistical Association 73 (1958), 812-815. [45] Julia Lynn Wirch and Mary R. Hardy, A synthesis of risk measures for capital adequacy, Insurance: Mathematics and Economics 25 (1999), 337-347.
|