Keywords and phrases: time fractional, temperature distribution, thermal stresses.
Received: January 1, 2021; Accepted: January 15, 2021; Published: June 15, 2021
How to cite this article: Nischal Mungle, Thermal modelling of thin equilateral triangular plate, JP Journal of Heat and Mass Transfer 23(1) (2021), 113-125. DOI: 10.17654/HM023010113
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. Basuli, Large deflections of plate problems subjected to normal pressure and heating, Indian J. Mech. Math. 6(1) (1968), 22-30. [2] H. M. Berger, A new approach to the analysis of large deflections of plate, J. Appl. Mech. 22 (1955), 465-472. [3] B. A. Bole and J. H. Weiner, Theory of Thermal Stresses, John Wiley & Sons, Inc., New York, 1960. [4] T. Iwinski and J. Nowinski, The problem of large deflections of orthotropic plates. I, Arch. Mech. Stos. 9 (1957), 593-603. [5] W. A. Nash and J. R. Modeer, Proceeding of the Symposium on the Theory of Thin Elastic Shell, International Union of Theoretical of Applied Mechanics, August 1959, North Holland Publishing Co., Amsterdam, 1959, 331 pp. [6] W. Nowinski, International Series of Monographs in Aeronautics and Austronautics, Vol. 3, Thermoelasticity, Addison-Wesley, 1962. [7] J. Nowinski, MRC Technical Summary Report, No. 34, Mathematics Research Center, U.S. Army, The University of Wisconsin, 1958, 17 pp. [8] B. Sen, Trilinear co-ordinates and boundary value problems, Bull. Calcutta Math. Soc. 60(1-2) (1968). [9] Thein Wah and Robert Schmidth, Large deflection of isotropic plates, Engng. Meh. Div. 89 (1963). [10] Paritosh Biswas, Thermal deflection of thick elastic triangular plate resting on elastic foundation, Indian J. Pure Appl. Math. 12(3) (1981), 400-404. [11] Paritosh Biswas, Large deflection of heated equilateral triangular plate, Bull. Calcutta Math. Soc. 7(3) (1974), 257-264. [12] N. Kumar and D. B. Kamdi, Thermal behavior of a finite hollow cylinder in context of fractional thermoelasticity with convection boundary conditions, J. Thermal Stresses (2020). doi:10.1080/01495739.2020.1776182. [13] R. Kumar and N. Kumar, Analysis of nano-scale beam by eigenvalue approach in modified couple stress theory with thermoelastic diffusion, Southeast Asian Bulletin of Mathematics 44 (2020), 515-532. [14] N. K. Lamba and K. C. Deshmukh, Hygrothermoelastic response of a finite solid circular cylinder, Multidiscipline Modeling in Materials and Structures 16(1) (2020), 37-52. doi:10.1108/MMMS-12-2018-0207. [15] Y. Povstenko, Fractional heat conduction equation and associated thermal stress, J. Thermal Stresses 28(1) (2004), 83-102. doi:10.1080/014957390523741. [16] Y. Povstenko, Thermoelasticity which uses fractional heat conduction equation, J. Math. Sci. 162(2) (2009), 296-305. doi:10.1007/s10958-009-9636-3. [17] Y. Povstenko, Non-axisymmetric solutions of a time-fractional diffusion-wave equation in an infinite cylinder, Fract. Calc. Appl. Anal. 14(3) (2011), 418-435. [18] Y. Z. Povstenko, Solutions to time-fractional diffusion-wave equation in cylindrical coordinates, Adv. Difference Equ. 2011 (2011), Article number: 930297, pp. 1-14. doi:10.1155/2011/930297. [19] Y. Z. Povstenko, Non-axisymmetric solutions to time-fractional heat conduction equation in a half-space in cylindrical coordinates, Math. Methods Phys. Mech. Fields 54(1) (2011), 212-219. [20] Y. Povstenko, Axisymmetric solutions to time fractional heat conduction equation in a half space under Robin boundary conditions, Int. J. Differential Equations 2012 (2012), 1-13. doi:10.1155/2012/154085. [21] Y. Povstenko, Fractional thermoelasticity, Encyclopedia of Thermal Stresses, R. B. Hetnarski, ed., Springer, New York, NY, USA, Vol. 4, 2014, pp. 1778-1787. [22] Y. Povstenko, Axisymmetric thermal stresses in half-space within the framework of fractional thermoelasticity, Scientific Issues of Jan Długosz University in Częstochowa Mathematics 19 (2014), 207-216.
|