Keywords and phrases: ultrasound, cucumber, somatic embryogenesis, artificial seed.
Received: February 4, 2020; Accepted: March 15, 2021; Published: June 2, 2021
How to cite this article: Morvarid Koochani, Ahmad Majd, Sedigheh Arbabian, Faezeh Ghanati and Sayeh Jafari Marandi, Effects of ultrasound on somatic embryogenesis and artificial seed production in cucumber (Cucumis sativus L.), JP Journal of Biostatistics 18(2) (2021), 249-267. DOI: 10.17654/BS018020249
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
Reference:
[1] S. Bose, J. Karmakar, D. P. Fulzele, U. Basu and T. K. Bandyopadhyay, In vitro shoots from root explant, their encapsulation, storage, plant recovery and genetic fidelity assessment of Limonium hybrid ‘Misty Blue’: a florist plant, Plant Cell Tissue Organ Cult. 129(2) (2017), 313-324. [2] P. P. Chee and D. M. Tricoli, Somatic embryogenesis and plant regeneration from cell suspension cultures of Cucumis sativus L, Plant Cell Rep. 7(4) (1988), 274-277. [3] B. Chen, J. Huang, J. Wang and L. Huang, Ultrasound effects on the antioxidative defense systems of Porphyridium cruentum, Colloids Surf B Biointerfaces 61(1) (2008), 88-92. [4] M. K. Cheruvathur, G. K. Kumar and T. D. Thomas, Somatic embryogenesis and synthetic seed production in Rhinacanthus nasutus (L.) Kurz, Plant Cell Tissue Organ Cult. 113(1) (2013), 63-71. [5] J. A. T. Da Silva and J. Dobránszki, Sonication and ultrasound: impact on plant growth and development, Plant Cell Tissue Organ Cult. 117(2) (2014), 131-143. [6] D. Das, A. Rahman, D. Kumari and N. Kumari, Synthetic seed preparation, germination and plantlet regeneration of Litchi (Litchi chinensis Sonn.), Am. J. Plant Sci. 7(10) (2016), 1395. [7] I. Debeaujon and M. Branchard, Somatic embryogenesis in Cucurbitaceae, Plant cell, tissue and organ culture 34(1) (1993), 91-100. [8] D. B. Duncan, Multiple range and multiple F tests, Biometrics 11(1) (1955), 1-42. [9] K. M. S. Elmeer and M. J. Hennerty, Observations on the combined effects of light, NAA and 2, 4-D on somatic embryogenesis of cucumber (Cucumis sativus) hybrids, Plant Cell Tissue Organ Cult. 95(3) (2008), 381-384. [10] S. Gantait, S. Kundu, N. Ali and N. C. Sahu, Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix, Acta Physiol. Plant. 37(5) (2015), 98. [11] H. Gawronska, W. Burza, E. Bolesta and S. Malepszy, Zygotic and somatic embryos of cucumber (Cucumis sativus L.) substantially differ in their levels of abscisic acid, Plant Sci. 157(1) (2000), 129-137. [12] F. Ghanati, M. Safari and A. Hajnorouzi, Partial clarification of signaling pathway of taxanes increase biosynthesis by low intensity ultrasound treatment in hazel (Corylus avellana) cells, S. Afr. J. Bot. 96 (2015), 65-70. [13] C. Gopi and P. Ponmurugan, Somatic embryogenesis and plant regeneration from leaf callus of Ocimum basilicum L, J. Biotechnol 126(2) (2006), 260-264. [14] S. M. Haque and B. Ghosh, High-frequency somatic embryogenesis and artificial seeds for mass production of true-to-type plants in Ledebouria revoluta: an important cardioprotective plant, Plant Cell Tissue Organ Cult. 127(1) (2016), 71-83. [15] S. M. Haque and B. Ghosh, Regeneration of Cytologically Stable Plants Through Dedifferentiation, Redifferentiation, and Artificial Seeds in Spathoglottis plicata Blume, (Orchidaceae), Horticultural Plant Journal 3(5) (2017), 199-208. [16] A. M. Hassanein, Somatic embryogenesis of cucumber (Cucumis sativus L) using seed cuttings obtained from pre-mature fruit, Plant Biotechnol (Tsukuba) 20(4) (2003), 275-281. [17] J. Hou, Y. Wu, Y. Shen, Y. Mao, W. Liu, W. Zhao and L. Wu, Plant regeneration through somatic embryogenesis and shoot organogenesis from immature zygotic embryos of Sapium sebiferum Roxb, Sci. Hortic. 197 (2015), 218-225. [18] T. Isah, Adjustments to in vitro culture conditions and associated anomalies in plants, Acta Biol. Cracov. Bot. 57(2) (2015), 9-28. [19] H.-J. Ju, J. Jeyakumar, M. Kamaraj, N. Praveen, I.-M. Chung, S.-H. Kim and M. Thiruvengadam, High frequency somatic embryogenesis and plant regeneration from hypocotyl and leaf explants of gherkin (Cucumis anguria L.), Sci. Hortic. 169 (2014), 161-168. [20] V. N. Juturu, G. K. Mekala and P. Kirti, Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.), Plant Cell Tissue Organ Cult. 120(3) (2015), 813-839. [21] H. G. A. Kumar, H. N. Murthy and K. Y. Paek, Embryogenesis and plant regeneration from anther cultures of Cucumis sativus L, Sci. Hortic. 98(3) (2003), 213-222. [22] Y. Liu, A. Yoshikoshi, B. Wang and A. Sakanishi, Influence of ultrasonic stimulation on the growth and proliferation of Oryza sativa Nipponbare callus cells, Colloids Surf B Biointerfaces 27(4) (2003), 287-293. [23] H. Lou and S. Kako, Role of high sugar concentrations in inducing somatic embryogenesis from cucumber cotyledons, Sci. Hortic. 64(1-2) (1995), 11-20. [24] T. Murashige and F. Skoog, A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol Plant 15(3) (1962), 473-497. [25] M. Nowacka and M. Wedzik, Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue, Appl. Acoust. 103 (2016), 163-171. [26] N. Passalacqua, P. Guarrera and G. De Fine, Contribution to the knowledge of the folk plant medicine in Calabria region (Southern Italy), Fitoterapia 78(1) (2007), 52-68. [27] P. K. Pati, S. P. Rath, M. Sharma, A. Sood and P. S. Ahuja, In vitro propagation of rose-a review, Biotechnol. Adv. 24(1) (2006), 94-114. [28] M. K. Rai, P. Asthana, S. K. Singh, V. Jaiswal and U. Jaiswal, The encapsulation technology in fruit plants-a review, Biotechnol. Adv. 27(6) (2009), 671-679. [29] K. Rajewska and D. Mierzwa, Influence of ultrasound on the microstructure of plant tissue, Innov. Food Sci. Emerg. Technol. 43 (2017), 117-129. [30] C. S. Raju, K. Kathiravan, A. Aslam and A. Shajahan, An efficient regeneration system via somatic embryogenesis in mango ginger (Curcuma amada Roxb.), Plant Cell Tissue Organ Cult. 112(3) (2013), 387-393. [31] K. Redenbaugh, B. D. Paasch, J. W. Nichol, M. E. Kossler, P. R. Viss and K. A. Walker, Somatic seeds: encapsulation of asexual plant embryos, Nat. Biotechnol. 4(9) (1986), 797. [32] A. Rezaei, F. Ghanati, M. Behmanesh and M. Mokhtari-Dizaji, Ultrasound-potentiated salicylic acid-induced physiological effects and production of taxol in hazelnut (Corylus avellana L.) cell culture, Ultrasound Med. Biol. 37(11) (2011), 1938-1947. [33] M. Safari, F. Ghanati, M. Behmanesh, A. Hajnorouzi, B. Nahidian and M. Ghahremani, Enhancement of antioxidant enzymes activity and expression of CAT and PAL genes in hazel (Corylus avellana L.) cells in response to low-intensity ultrasound, Acta. Physiol. Plant. 35(9) (2013), 2847-2855. [34] A. Sharififar, M. Nazari and H. R. Asghari, Effect of ultrasonic waves on seed germination of Atriplex lentiformis, Cuminum cyminum, and Zygophyllum eurypterum, J. Appl. Res. Med. Aromat Plants 2(3) (2015), 102-104. [35] S. Sharma and A. Shahzad, Encapsulation technology for short-term storage and conservation of a woody climber, Decalepis hamiltonii Wight and Arn, Plant Cell Tissue Organ Cult. 111(2) (2012), 191-198. [36] A. Sunandar and E. D. J. Supena, Induction of Somatic Embryogenesis in Sengon (Falcataria moluccana) With Thidiazuron and Light Treatments, Hayati J. Biosci. 24(2) (2017), 105-108. [37] T. A. Thorpe, History of plant tissue culture, Mol. Biotechnol. 37(2) (2007), 169-180. [38] I. K. Vasil, A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops, Plant Cell Rep. 27(9) (2008), 1423. [39] M. Y. Vdovitchenko and I. N. Kuzovkina, Artificial seeds as a way to produce ecologically clean herbal remedies and to preserve endangered plant species, Moscow Univ. Biol. Sci. Bull. 66(2) (2011), 48. [40] S. Von Arnold, I. Sabala, P. Bozhkov, J. Dyachok and L. Filonova, Developmental pathways of somatic embryogenesis, Plant Cell Tissue Organ Cult. 69(3) (2002), 233-249. [41] H. Yang, J. Gao, A. Yang and H. Chen, The ultrasound-treated soybean seeds improve edibility and nutritional quality of soybean sprouts, Food Res. Int. 77 (2015), 704-710.
|