Keywords and phrases: nonlinear parabolic equation, numerical blow-up time, nonlinear memory, continuity, Dirichlet boundary conditions.
Received: April 17, 2021; Accepted: May 25, 2021; Published: June 3, 2021
How to cite this article: N’gohisse Konan Firmin, Camara Zié and Yoro Gozo, Continuity of the Blow-Up Time in a Nonlinear Parabolic Equation With Nonlinear Memory, International Journal of Numerical Methods and Applications 20(1) (2021), 55-75. DOI 10.17654/NM020010055
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] T. K. Boni and F. K. N’gohisse, Continuity of the quenching time in a semilinear parabolic equation, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 37-48. [2] T. K. Boni, Extinction for discretizations of some semilinear parabolic equations, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 795-800. [3] T. K. Boni, On quenching of solutions for some semilinear parabolic equations of second order, Bull. Belg. Math. Soc. 7 (2000), 73-95. [4] C. Brandle and C. M. Braumer, Singular perturbation method in a parabolic problem with free boundary, BAIL IV (Novosibirsk), Boole Press Conf. Ser., Boole, Vol. 8, 1986, pp. 7-14. [5] Z. Camara, F. K. N’gohisse and G. Yoro, Blow-up for discretization of a nonlinear parabolic equation with nonlinear memory, J. Math. Research 11(6) (2019), 29-42. [6] C. Cortazar, M. del Pino and M. Elguetta, On the blow-up set for Indiana Univ. Math. J. 47 (1998), 541-561. [7] C. Cortazar, M. del Pino and M. Elguetta, Uniqueness and stability of regional blow-up in a porous-medium equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 927-960. [8] K. Deng and H. A. Levine, On the blow-up of at quenching, Proc. Amer. Math. Soc. 106 (1989), 1049-1056. [9] K. Deng and H. A. Levine, Quenching for a nonlinear diffusion equation with singularly condition, Z. Angew. Math. Phys. 50 (1999), 574-584. [10] C. Kammerer Fermanian, F. Merle and H. Zaag, Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view, Math. Ann. 317 (2000), 195-237. [11] M. Fila and H. A. Levine, Quenching on the boundary, Nonlinear Anal. 21 (1993), 795-802. [12] A. Friedman and B. McLeod, Blow-up of positive solutions of nonlinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-477. [13] V. A. Galaktionov and J. L. Vazquez, Continuation of blow-up solutions of nonlinear heat equation, Current developments in PDE (Temuco, 1999), Dis. Conti. Syst. A 8 (2002), 399-433. [14] P. Groisman and J. D. Rossi, Dependence of the blow-up time with respect to parameters and numerical approximations for a parabolic problem, Asymptot. Anal. 37 (2004), 79-91. [15] P. Groisman, J. D. Rossi and H. Zaag, On the dependence of the blow-up time with respect to the initial data in a semilinear parabolic problem, Comm. Partial Differential Equations 28 (2003), 737-744. [16] P. Groisman, Totally discrete explicit and semi-explicit Euler method for a blow-up problem in several space dimension, Computing 76 (2006), 325-352. [17] D. Hirata, Blow-up for a class of semilinear integro-differential equations of parabolic type, Math. Methods Appl. Sci. 22 (1999), 1087-1100. [18] N. Koffi and D. Nabongo, Numerical blow-up for solutions of semilinear heat equations with small diffusion, An. Univ. Oradea Fasc. Mat. 23 (2016), 21-36. [19] R. K. Kouakou and F. K. N’gohisse, Quenching time for some semilinear equations with a potential, American Review of Mathematics and Statistics 7(2) (2019), 3-9. [20] Y. X. Li and C. H. Xie, Blow-up for semilinear parabolic equation with nonlinear memory, Z. Angew. Math. Phys. 55 (2004), 15-27. [21] F. S. Li, Global existence and uniqueness of weak solution to non linear viscoelastic full Marguerre-von Karman shallows equations, Acta Math. Sin. 25 (2009), 2133-2156. [22] H. Nachid, F. K. N’gohisse and N. Koffi, The phenomenon of quenching for a reaction-diffusion system with nonlinear boundary conditions, J. Indian Math. Soc. 88 (2021), 155-175. [23] H. Nachid, F. K. N’gohisse and G. Yoro, The blowing-up phenomenon for a reaction diffusion equation, T. Math. Sci. 60 (2020), 137. [24] F. K. N’gohisse and T. K. Boni, Numerical blow-up solutions for some semilinear heat equations, Electron. Trans. Numer. Anal. 30 (2008), 247-257. [25] F. K. N’gohisse and T. K. Boni, Numerical blow-up for a nonlinear heat equation, Acta Math. Sin. (Engl. Ser.) 27 (2011), 845-862. [26] F. K. N’gohisse, R. K. Kouakou and G. Yoro, Continuity of the blow-up time for a nonlocal diffusion parabolic equation, Adv. Math. Sci. J. 9 (2020), 1259-1279. [27] P. Quittner and P. Souplet, Superlinear parabolic problems, blow-up, global existence and steady states series, Birkhäuser Advanced Tests/Basler Lehrbücher, 2007. [28] P. Quittner, Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math. 29(3) (2003), 757-799. [29] L. B. B. Sobo, G. Yoro and H. Nachid, On asymptotics of the blow-up for differential equation in a large domain, Int. J. Rec. S. Res. 7 (2016), 12158-12168. [30] P. Souplet, Monotonicity of solution and blow-up for semilinear parabolic equation with nonlinear memory, Z. Angew. Math. Phys. 55 (2004), 28-31. [31] L. Zhang, Y. S. Ziang and Z. Zhou, Parabolic equation with VMO coefficients in generalized Morrey spaces, Acta Math. Sin. (Engl. Ser.) 26 (2010), 117-130. [32] J. Zhou, Non-simultaneous blow-up for a semilinear parabolic system with non linear memory, Surv. Math. Appl. 2 (2007), 21-27.
|