Keywords and phrases: MHD, Casson nanofluid, Soret effect, Dufour effect, slanted surface.
Received: September 14, 2020; Accepted: December 14, 2020; Published: April 12, 2021
How to cite this article: K. V. Chandra Sekhar, Soret and Dufour effects on Casson nanofluid past a non-linear permeable slanted surface, JP Journal of Heat and Mass Transfer 22(2) (2021), 169-190. DOI: 10.17654/HM022020169
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] W. A. Khan and I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Trans. 53 (2010), 2477-2483. doi:10.1016/j.ijheatmasstransfer.2010.01.032. [2] S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticle, Mater. Sci. 231 (1995), 99-105. [3] J. Buongiorno, Convective transport in nanofluids, J. Heat Transf. 128 (2006), 240-250. doi:10.1115/1.2150834. [4] D. A. Nield and A. V. Kuznetsov, The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transf. 52 (2009), 5792-5795. doi:10.1016/j.ijheatmasstransfer.2009.07.024. [5] M. I. Anwar, I. Khan, S. Sharidan and M. Z. Salleh, Conjugate effects of heat and mass transfer of nanofluids over a nonlinear stretching sheet, Int. J. Phys. Sci. 7 (2012), 4081-4092. doi:10.5897/IJPS12.358. [6] P. Suriyakumar and S. P. A. Devi, Effects of suction and internal heat generation on hydromagnetic mixed convective nanofluid flow over an inclined stretching plate, Eur. J. Adv. Eng. Technol. 2 (2015), 51-58. [7] M. Ziaei-Rad, A. Kasaeipoor, M. M. Rashidi and G. Lorenzini, A similarity solution for mixed-convection boundary layer nanofluid flow on an inclined permeable surface, J. Therm. Sci. Eng. Appl. 9 (2017), 021015. doi:10.1115/1.4035733. [8] T. Thumma, O. A. Bég and S. R. Sheri, Finite element computation of magnetohydrodynamic nanofluid convection from an oscillating inclined plate with radiative flux, heat source and variable temperature effects, Proc. Inst. Mech. Eng, Part N: J. Nanomater. Nanoeng. Nanosyst. 231 (2017), 179-194. doi:10.1177/2397791417731452. [9] M. Selva Rani and A. Govindarajan, Radiative fluid flow of a nanofluid over an inclined plate with non-uniform surface temperature, J. Phys.: Conf. Ser. 1000 (2018), 012173. doi:10.1088/1742-6596/1000/1/012173. [10] M. Khan, A. Shahid, M. Y. Malik and T. Salahuddin, Thermal and concentration diffusion in Jeffery nanofluid flow over an inclined stretching sheet: a generalized Fourier’s and Fick’s perspective, J. Mol. Liquids 251 (2018), 7-14. doi:10.1016/j.molliq.2017.12.001. [11] T. Chakraborty, K. Das and P. K. Kundu, Ag-water nanofluid flow over an inclined porous plate embedded in a non-Darcy porous medium due to solar radiation, J. Mech. Sci. Technol. 31 (2017), 2443-2449. doi:10.1007/s12206-017-0442-4. [12] M. M. Bhatti, T. Abbas and M. M. Rashidi, Effects of thermal radiation and electromagnetohydrodynamics on viscous nanofluid through a Riga plate, Multidiscipline Model Mater. Struct. 12 (2016), 605-618. doi:10.1108/MMMS-07-2016-0029. [13] M. M. Bhatti, S. R. Mishra, T. Abbas and M. M. Rashidi, A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects, Neural Comput. Appl. 30 (2018), 1237-1249. doi:10.1007/s00521-016-2768-8. [14] A. Hussanan, I. Khan, M. R. Gorji and W. A. Khan, CNTs-water-based nanofluid over a stretching sheet, BioNanoScience 9 (2019), 21-29. doi:10.1007/s12668-018-0592-6. [15] B. Souayeh, M. G. Reddy, P. Sreenivasulu, T. Poornima, M. Rahimi-Gorji and I. M. Alarifi, Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle, J. Mol. Liquids 284 (2019), 163-174. doi:10.1016/j.molliq.2019.03.151. [16] Y. Ma, R. Mohebbi, M. M. Rashidi and Z. Yang, Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method, Phys. Fluids 30 (2018), 032001. doi:10.1063/1.5022060. [17] N. Makulati, A. Kasaeipoor and M. M. Rashidi, Numerical study of natural convection of a water-alumina nanofluid in inclined C-shaped enclosures under the effect of magnetic field, Adv. Powder Technol. 27 (2016), 661-672. doi:10.1016/j.apt.2016.02.020. [18] M. M. Bhatti, T. Abbas and M. M. Rashidi, Entropy generation as a practical tool of optimisation for non-Newtonian nanofluid flow through a permeable stretching surface using SLM, J. Comput. Design Eng. 4 (2017), 21-28. doi:10.1016/j.jcde.2016.08.004. [19] T. Hymavathi and W. Sridhar, Numerical study of flow and heat transfer of Casson fluid over an exponentially porous stretching surface in presence of thermal radiation, International Journal of Mechanical and Production Engineering Research and Development 8 (2018), 1145-1154. [20] K. Suneetha, S. M. Ibrahim and G. V. R. Reddy, Radiation and heat source effects on MHD flow over a permeable stretching sheet through porous stratum with chemical reaction, Multidiscipline Modeling in Materials and Structures 14 (2018), 1101-1114. [21] G. Dharmaiah, C. Baby Rani, N. Vedavathi and K. S. Balamurugan, Heat and mass transfer on MHD fluid flow over a semi infinite flat plate with radiation absorption, heat source and diffusion thermo effect, Frontiers in Heat and Mass Transfer 11 (2018), 1-8. [22] Y. H. Krishna, G. V. R. Reddy and O. D. Makinde, Chemical reaction effect on MHD flow of Casson fluid with porous stretching sheet, Defect and Diffusion Forum 389 (2018), 100-109. [23] G. Charan Kumar, K. Jayarami Reddy, K. Ramakrishna and M. Narendradh Reddy, Non-uniform heat source/sink and joule heating effects on chemically radiative MHD mixed convective flow of micropolar fluid over a stretching sheet in porous medium, Defect and Diffusion Forum 388 (2018), 281-302. [24] P. R. Kumari and D. Sree Devi, Effect of radiation and radiation absorption on convective heat and mass transfer flow of a viscous electrically conducting fluid in a non-uniformly heated vertical channel, International Journal of Mechanical and Production Engineering Research and Development 8(7) (2018), 1382-1390. [25] N. Vijaya, Y. Hari Krishna, K. Kalyani and G. V. R. Reddy, Soret and radiation effects on an unsteady flow of a Casson fluid through porous vertical channel with expansion and contraction, Frontiers in Heat and Mass Transfer 11 (2018), 1-11. [26] H. Talla, P. Kumari and W. Sridhar, Numerical study to diffusion of chemically reactive species over MHD exponentially stretching surface of a Casson fluid, International Journal of Mechanical Engineering and Technology 9 (2018), 470-481. [27] N. Vijaya, M. R. Madhavi and Y. H. Krishna, Boundary layer flow of a mixed convective nanofluid over a vertical circular cylinder under the influence of magnetic field, heat radiation and external surface temperature, International Journal of Mechanical and Production Engineering Research and Development 8 (2018), 411-420. [28] V. R. R. Gurramapti, N. Bhaskar Reddy and Ali J. Chamkha, MHD mixed convection oscillatory flow over a vertical surface in a porous medium with chemical reaction and thermal radiation, Journal of Applied Fluid Mechanics 9 (2016), 1221-1229. [29] G. Dharmaiah, Ali J. Chamkha, N. Vedavathi and K. S. Balamurugan, Viscous dissipation effect on transient aligned magnetic free convective flow past an inclined moving plate, Frontiers in Heat and Mass Transfer 12 (2019), 1-11. [30] P. Nagasantoshi, G. V. Ramana Reddy, M. Gnaneswara Reddy and P. Padma, Nanofluid flow over a stretching sheet with non-uniform heat source and variable viscosity, Journal of Nanofluids 7 (2018), 821-832. [31] C. Baby Rani, N. Vedavathi, G. Dharmaiah and K. S. Balamurugan, Effects of radiation and hall current on unsteady MHD free convective flow over inclined porous surface, International Journal of Mechanical and Production Engineering Research and Development 8(4) (2018), 1177-1186. [32] P. S. S. Nagalakshmi and N. Vijaya, MHD flow of Carreau nanofluid explored using CNT over a nonlinear stretched sheet, Frontiers in Heat and Mass Transfer 14 (2018), 1-9. [33] Rafique Khuram, Ilyas Khan et al., Numerical solution of Casson nanofluid flow over a nonlinear inclined surface with Soret and Dufour effects by Kellor-Box method, Frontiers in Physics 7 (2019), 1-13. doi:10.3389/fphy.2019.00139.
|