Keywords and phrases: irreversible compression heat pump, ecological coefficient of performance, Newton’s heat transfer laws, local stability, steady-state.
Recieved: December 11, 2020; Revised: December 23, 2020; Accepted: January 6, 2021; Published: March 18, 2021
How to cite this article: Paiguy Armand, Ngouateu Wouagfack, Gaëlle Fouodji Keune and Réné Tchinda, Effects of Internal and External Irreversibilities on the Local Stability of an Irreversible Compression Heat Pump Operating at the Maximum Ecological Coefficient of Performance, Advances and Applications in Fluid Mechanics 26(1) (2021), 25-48. DOI: 10.17654/FM026010025
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. Cavallini and L. Mattarolo, Thermodinamica Applicata, Padova (IT) CLEUP, 1990. [2] Y. Huang and D. Sun, Performance optimization of an irreversible heat pump with variable-temperature heat reservoirs, Renewable Energy Resources and a Greener Future VIII-13-1 (2006). [3] Y. Bi, L. Chen and F. Sun, Exergetic efficiency optimization for an irreversible heat pump working on reversed Brayton cycle, Pramana - Journal of Physics 74 (2010), 351-363. [4] M. Huleihil and B. Andresen, Generalized performance characteristics of refrigeration and heat pump systems, Physics Research International 2010 (2010), Article ID: 341016. doi:10.1155/2010/341016. [5] Y. Bi, L. Chen, Z. Ding and F. Sun, Performance optimization of irreversible air heat pumps considering size effect, Journal of Thermal Science 27 (2018), 223-229. [6] M. Govind, C. Sharad and K. S. Sunil, Exergy-based ecological analysis of generalized irreversible heat pump system, Journal of Engineering Science and Technology 6 (2011), 575-585. [7] F. Botticela and L. Viscito, Seasonal performance analysis of a residential heat pump using different fluids with low environmental impact, Energy Procedia 82 (2015), 878-885. [8] B. Yang, L. Chen and F. Sun, Performance analysis and optimization for an endoreversible Carnot heat pump cycle with finite speed of the piston, International Journal of Energy and Environment 2 (2011), 1133-1140. [9] A. Irfan, P. Mohd and A. Tasmeem, Performance analysis and optimization of some irreversible heat pump cycles with finite time thermodynamics, Journal of Mechanical Engineering 6 (2015), 32-39. [10] L. Chen, Z. Xiaoqin, F. Sun and C. Wu, Exergy-based ecological optimization for a generalized irreversible Carnot heat pump, Applied Energy 84(1) (2007), 78-88. [11] L. Chen, F. Huijun and F. Sun, Heating load, COP, exergy loss rate, exergy output rate and ecological optimizations for a class of generalized irreversible universal heat pump cycles, Revista Mexicana de Fisica 56(4) (2010), 302-310. [12] L. Chen, H. Feng and F. Sun, Optimal piston speed ratios for irreversible Carnot refrigerator and heat pump using finite time thermodynamics, finite speed thermodynamics and the direct method, Journal of Energy Institute 84(2) (2011), 105-112. [13] H. Feng, L. Chen and F. Sun, Heating load, COP, exergy loss rate, exergy output rate and ecological analyses and optimizations for an irreversible universal steady flow variable-temperature heat reservoir heat pump cycle model, Journal of Energy Institute 84(2) (2011), 113-122. [14] M. Santillán, G. Maya-Aranda and F. Angulo-Brown, Local stability analysis of an endoreversible Curzon-Ahborn-Novikov engine working in a maximum-power-like regime, J. Phys. 34 (2001), 2068-2072. [15] L. Guzmán-Vargas, I. Reyes-Ramírez and N. Sánchez, The effect of heat transfer laws and thermal conductances on the local stability of an endoreversible heat engine, Journal of Physics D: Applied Physics 38 (2005), 1282-1291. doi:10.1088/0022-3727/38/8/028. [16] J. C. Chimal-Eguía, M. A. Barranco-Jiménez and F. Angulo-Brown, Stability analysis of an endoreversible heat engine with Stefan-Boltzmann heat transfer law working in maximum-power-like regime, Open Syst. Inf. Dyn. 13 (2006), 43-53. [17] J. C. Chimal-Eguía, I. Reyes-Ramírez and L. Guzmán-Vargas, Local stability analysis of an endoreversible heat engine working in an ecological regime, Open Syst. Inf. Dyn. 14 (2007), 411-424. doi:10.1007/S11080-007-9065-Z. [18] W. Nie, H. Jizhou, Y. Bei and Q. Xiaoxia, Local stability analysis of an irreversible heat engine working in the maximum power output and the maximum efficiency, Applied Thermal Engineering 28 (2008), 699-706. [19] M. A. Barranco-Jiménez, R. T. Páez-Hermández, I. Reyes-Ramírez and L. Guzmán-Vargas, Local stability analysis of a thermo-economic model of a Chambadal-Novikov-Curzon-Ahlborn heat engine, Entropy 13 (2011), 1584-1594. doi:10.3390/e13091584. [20] R. Páez-Hermández, D. L. Luna and P. P. Diaz, Dynamic properties in an endoreversible Curzon-Ahlborn engine using a Van der Waals gas as working substance, Phys. A 390 (2011), 3275-3282. [21] N. Sanchez-Salas, J. C. Chimal-Eguía and F. Guzman-Aguilar, On the dynamic robustness of a non-endoreversible engine working in different operation regimes, Entropy 13 (2011), 422-436. doi:10.3390/e13020422. [22] R. Páez-Hermández, D. L. Luna, P. P. Diaz and M. A. Barranco Jiménez, Local stability analysis of an endoreversible Curzon-Ahlborn-Novikov engine without ideal gas working at the maximum ecological regime, Journal of Energy and Power Engineering 7 (2013), 928-936. [23] M. Reséndiz-Antonio and M. Santillán, On the dynamical vs. thermodynamical performance of a -type Stirling engine, Phys. A 409 (2014), 162-174. [24] M. A. Barranco-Jiménez, N. Sánchez-Salas and I. Reyes-Ramírez, Local stability analysis for a thermo-economic irreversible heat engine model under different performance regimes, Entropy 17 (2015), 8019-8030. doi:10.3390/e17127860. [25] L. Chen, X. Wu, Q. Xiao, Y. Ge and F. Sun, Local stability of a generalized irreversible Carnot engine working at the maximum ecological function, Environmental Engineering and Management Journal 14(10) (2015), 2341-2351. [26] I. Reyes-Ramírez, J. Gonzalez-Ayala, C. A. Hernandez and M. Santillan, Local stability analysis of a low dissipation heat engine working at the maximum power output, Phys. Rev. E 96(4) (2017), 042128. doi:10.1103/PhysRevE.96.042128. [27] L. Gonzalez-Ayala, M. Santillán, I. Reyes-Ramírez and A. Calvo-Hermández, Link between optimization and local stability of a low dissipation heat engine: dynamic and energetic behaviors, Phys. Rev. E 98 (2018), 032142. [28] L. Chen, X. Wu and X. Liu, Local stability of a generalized irreversible heat engine with linear phenomenological heat transfer law working in an ecological regime, Thermal Science and Engineering Progress 8 (2018), 537-541. [29] Y. Huang and D. Sun, Local stability analysis of a non-endoreversible refrigerator, Applied Thermal Engineering 28 (2008), 1443-1449. [30] H. Jizhou, M. Guiling and N. Wenjie, Local stability analysis of an endoreversible Carnot refrigerator, Phys. Scr. 82 (2010), 025002, 6 pp. doi:10.1088/0031-8949/ 82/02/025002. [31] X. Wu, L. Chen, Y. Ge and F. Sun, Local stability of a non-endoreversible Carnot refrigerator working at the maximum ecological function, Applied Mathematical Modelling 39 (2015), 1689-1700. [32] P. A. Ngouateu Wouagfack, K. G. Fouodji and R. Tchinda, Local stability analysis of an irreversible refrigerator working at the maximum thermo- ecological functions: a comparison, International Journal of Refrigeration 75 (2017), 38-51. [33] K. G. Fouodji, W. P. A. Ngouateu and R. Tchinda, Local stability analysis of an irreversible absorption refrigerator powered by a wood boiler, International Journal of Refrigeration 115 (2020), 83-95. [34] Y. Huang, Local asymptotic stability of an irreversible heat pump subject to total thermal conductance constraint, Energy Conversion and Management 50 (2009), 1444-1449. [35] X. Wu, L. Chen, Y. Ge and F. Sun, Local stability of an endoreversible heat pump with linear phenomenological heat transfer law working in an ecological regime, Sci. Iran. B 19(6) (2012), 1519-1525. [36] Y. Ust, Ecological performance analysis and optimization of power generation systems, Ph.D. Thesis Progress Report, Yildiz Technical University, Istanbul, 2004. [37] A. Bejan, Theory of heat transfer-irreversible refrigeration plants, International Journal of Heat Transfer 32 (1989), 1631-1639. [38] C. Wu and R. L. Kiang, Finite-time thermodynamic analysis of a Carnot engine with internal irreversibility, Energy 1 (1992), 1173-1178. [39] Y. Ust and B. Sahin, Performance optimization of irreversible refrigerators based on a new thermo-ecological criterion, International Journal of Refrigeration 30 (2007), 527-534.
|