Keywords and phrases: Bayesian analysis, non-parametric inference, non-homogeneous Poisson process.
Received: November 22, 2020; Accepted: December 15, 2020; Published: March 18, 2021
How to cite this article: M. Badiane, P. Ngom and C. Manga, Bayesian selection of local bandwidth in non-homogeneous Poisson process kernel estimators for the intensity function, Far East Journal of Theoretical Statistics 61(2) (2021), 109-144. DOI: 10.17654/TS061020109
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. Baddeley and R. Turner, Spatstat: an R package for analyzing spatial point patterns, J. Stat. Soft. 12(6) (2005), 1-42. [2] C. D. Barr and F. P. Schoenberg, On the Voronoi estimator for the intensity of an inhomogeneous planar Poisson process, Biometrika 97(4) (2010), 977-984. [3] M. Berman and P. Diggle, Estimating weighted integrals of the second-order intensity of a spatial point process, J. R. Stat. Soc. Ser. B. Stat. Methodol. 51 (1) (1989), 81-92. [4] N. S. Belaid, N. S. Adjabi, C. C. Kokonendji and N. Zougab, Bayesian local bandwidth selector in multivariate associated kernel estimators for joint probability mass functions, Journal of Statistical Computation and Simulation 86 (2016a), 3667-3681. [5] M. J. Brewer, A modelling approach for bandwidth selection in kernel density estimation, Proceedings of COMPSTAT Physica Verlag, Heidelberg, 1998, pp. 203-208. [6] M. J. Brewer, A Bayesian model for local smoothing in kernel density estimation, Statistics and Computing 10 (2000), 299-309. [7] M. M. Brooks and J. S. Marron, Asymptotic optimality of the least-squares cross-validation bandwidth for kernel estimates of intensity functions, Stochastic Process. Appl. 38(1) (1991), 157-165. [8] R. Cao, Bootstrapping the mean integrated squared error, J. Multivariate Anal. 45(1) (1993), 137-160. [9] R. Cao, A. Cuevas and W. González Manteiga, A comparative study of several smoothing methods in density estimation, Comput. Statist. Data Anal. 17(2) (1994), 153-176. [10] A. Cowling, P. Hall and M. J. Phillips, Bootstrap confidence regions for the intensity of a Poisson point process, J. Amer. Statist. Assoc. 91(436) (1996), 1516-1524. [11] Noel A. C. Cressie, Statistics for Spatial Data, (Revised), Wiley-Interscience, New York, 1993. [12] O. Cronie and M. N. M. Van Lieshout, A non-model based approach to bandwidth selection for kernel estimators of spatial intensity functions, Biometrika 105 (2018), 455-462. [13] L. Cucala, Espacements bidimensionnels et données entachées dérreurs dans l’analyse des processus ponctuels spatiaux, Ph. D. Thesis, Université des Sciences Sociales, Toulouse I, 2006. [14] L. Cucala, Intensity estimation for spatial point processes observed with noise, Scand. J. Stat. 35(2) (2008), 322-334. [15] M. S. De Lima and G. S. Atuncar, Unconstrained pilot selectors for smoothed cross-validation, Journal of Nonparametric Statistics 23 (2010), 137-148. [16] P. Diggle, A kernel method for smoothing point process data, J. R. Stat. Soc. Ser. C. Appl. Stat. 34(2) (1985), 138-147. [17] P. J. Diggle, Statistical Analysis of Spatial Point Patterns, 2nd ed., A Hodder Arnold Publication, Oxford, UK, 2003. [18] P. Diggle and J. S. Marron, Equivalence of smoothing parameter selectors in density and intensity estimation, J. Amer. Statist. Assoc. 83 (1988), 793-800. [19] T. Duong, ks: Kernel Smoothing, R package version 1.8.13, 2013. [20] T. Duong and M. Hazelton, Plug-in bandwidth matrices for bivariate kernel density estimation, J. Nonparametr. Stat. 15(1) (2003), 17-30. [21] T. Duong and M. L. Hazelton, Cross-validation bandwidth matrices for multivariate kernel density estimation, Scand. J. Stat. 32(3) (2005), 485-506. [22] I. Fuentes-Santos, W. González-Manteiga and J. Mateu, Consistent smooth bootstrap kernel intensity estimation for inhomogeneous spatial Poisson point processes, Scand. J. Stat. 43(2) (2015), 416-435. [23] W. González-Manteiga, R. Cao and J. S. Marron, Bootstrap selection of the smoothing parameter in nonparametric hazard rate estimation, J. Amer. Statist. Assoc. 91(435) (1996), 1130-1140. [24] Y. Guan, A goodness-of-fit test for inhomogeneous spatial Poisson processes, Biometrika 95(4) (2008a), 831-845. [25] Y. Guan, On consistent nonparametric intensity estimation for inhomogeneous spatial point processes, J. Amer. Statist. Assoc. 103(483) (2008b), 1238-1247. [26] Y. Guan and J. M. Loh, A thinned block bootstrap variance estimation procedure for inhomogeneous spatial point patterns, J. Amer. Statist. Assoc. 102(480) (2007), 1377-1386. [27] A. K. Gangopadhyay and K. N. Cheung, Bayesian approach to the choice of smoothing parameter in kernel density estimation, J. Nonparametric Stat. 14 (2002), 655-664. [28] D. J. Illian, P. A. Penttinen, D. H. Stoyan and D. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns, John Wiley & Sons, Chichester, UK, 2008. [29] K. B. Kulasekera and W. J. Padgett, Bayes bandwidth selection in kernel density estimation with censored data, Journal of Nonparametric Statistics 18 (2006), 129-143. [30] C. N. Kuruwita, K. B. Kulasekera and W. J. Padgett, Density estimation using asymmetric kernels and Bayes bandwidths with censored data, Journal of Statistical Planning and Inference 140 (2010), 1765-1774. [31] J. M. Loh and W. Jang, Estimating a cosmological mass bias parameter with bootstrap bandwidth selection, J. R. Stat. Soc. Ser. C. Appl. Stat. 59(5) (2010), 761-779. [32] P. H. Lo, An iterative plug-in algorithm for optimal bandwidth selection in kernel intensity estimation for spatial data, Ph.D. Thesis, Technical University of Kaiserslautern, 2017. [33] J. S. Marron and M. P. Wand, Exact mean integrated squared error, Ann. Statist. 20(2) (1992), 712-736. [34] D. Scott, Multivariate Density Estimation, Theory, Practice and Visualization, Wiley, New York, 1992. [35] B. Silverman, Density Estimation for Statistics and Data Analysis (Monographs on Statistics and Applied Probability), Chapman & Hall/CRC, New York, 1986. [36] S. M. Somé, Estimation non-paramétrique par noyaux associés multivariés et applications, Thèse de Doctorat, Université de Bourgogne Franche-Comté, France, 2015. [37] C. C. Taylor, Bootstrap choice of the smoothing parameter in kernel density estimation, Biometrika 76(4) (1989), 705. [38] R. P. Waagepetersen, An estimating function approach to inference for inhomogeneous Neyman-Scott processes, Biometrics 63(1) (2007), 252-258. [39] M. P. Wand and M. C. Jones, Multivariate plug-in bandwidth selection, Computational Statistics 9 (1994), 97-116. [40] M. P. Wand, Error analysis for general multivariate kernel estimators, J. Nonparametr. Stat. 2(1) (1992), 1-15. [41] X. Zhang, M. L. King and R. J. Hyndman, A Bayesian approach to bandwidth selection for multivariate kernel density estimation, Computational Statistics and Data Analysis 50 (2006), 3009-3031. [42] Y. Ziane, S. Adjabi and N. Zougab, Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data, J. Appl. Stat. 42 (2015), 1645-1658. [43] N. Zougab, S. Adjabi and C. C. Kokonendji, Binomial kernel and Bayes local bandwidth in discrete functions estimation, J. Nonparametric Stat. 24 (2012), 783-795. [44] N. Zougab, S. Adjabi and C. C. Kokonendji, Adaptive smoothing in associated kernel discrete functions estimation using Bayesian approach, J. Stat. Comput. Simul. 83 (2013), 2219-2231. [45] N. Zougab, S. Adjabi and C. C. Kokonendji, Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation, Computational Statistics and Data Analysis 75 (2014), 28-38.
|