Keywords and phrases: Weyl’s theorem, Browder’s theorem, Property (H0), Property (H), Property (Bv), SVEP.
Received: February 23, 2021; Accepted: March 5, 2021; Published: March 18, 2021
How to cite this article: P. Vasanthakumar and N. Jayanthi, Property (Bv) for bounded linear operators, International J. Functional Analysis, Operator Theory and Applications 13(1) (2021), 57-66. DOI: 10.17654/FA013010057
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] P. Aiena, Fredholm and Local Spectral Theory with Application to Multipliers, Kluwer Academic Publishers, 2004. [2] P. Aiena, Quasi-Fredholm operators and localized SVEP, Acta Sci. Math. (Szeged) 73 (2007), 251-263. [3] P. Aiena and Fernando Villafañe, Weyl’s theorem for some classes of operators, Integral Equations Operator Theory 53 (2005), 453-466. [4] P. Aiena, Elvis Aponte and Edixon Balzon, Weyl type theorems for left and right polaroid operators, Integral Equations Operator Theory 66 (2010), 1-20. [5] P. Aiena, Fredholm and local spectral theory II, with application to Weyl-type theorems, Lecturer Notes in Mathematics 2235, Springer, 2018. [6] M. Amouch and M. Bekani, On the property (gw), Mediterr. J. Math. 5 (2008), 371-378. [7] M. Berkani and H. Zariough, New extended Weyl type theorems, Mat. Vesnik 62 (2010), 145-154. [8] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376. [9] L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288. [10] S. V. Djordjević and Y. M. Han, Browder’s theorem and spectral continuity, Glasgow Math. J. 42 (2000), 479-486. [11] R. Harte and W. Y. Lee, Another note on Weyl’s theorem, Trans. Amer. Math. Soc. 349 (1997), 2115-2124. [12] N. Jayanthi and P. Vasanthakumar, A new Browder type property, International Journal of Mathematical Analysis 14 (2020), 1-11. [13] Mourad Oudghiri, Weyl’s and Browder’s theorems for operators satisfying the SVEP, Studia Math. 163 (2004), 85-101. [14] V. Rakočević, Operators obeying a-Weyl’s theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919. [15] V. Rakočević, On a class of operators, Mat. Vesnik 37 (1985), 423-426. [16] J. Sanabria, C. Carpintero, E. Rosas and O. García, On generalized property (v) for bounded linear operators, Studia Math. 212 (2012), 141-154. [17] H. Zariouh, Property (gz) for bounded linear operators, Mat. Vesnik 65 (2013), 94-103. [18] H. Zariouh, New version of property (az), Mat. Vesnik 66 (2014), 317-322.
|