Keywords and phrases: approximate fixed point theorems, approximate common fixed point theorems, b-metric space setting, certain general contractive conditions.
Received: November 5, 2020; Accepted: November 16, 2020; Published: March 9, 2021
How to cite this article: M. O. Olatinwo, Some approximate common fixed point theorems in b-metric spaces, JP Journal of Fixed Point Theory and Applications 16(1) (2021), 1-17. DOI: 10.17694/FP016010001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] R. P. Agarwal, D. O’Regan and D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, Topological Fixed Point Theory 6, Springer Science + Business Media, 2009. [2] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math. 3 (1922), 133-181. [3] V. Berinde, Iterative Approximation of Fixed Points, Springer-Verlag, Berlin Heidelberg, 2007. [4] V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math. 19(1) (2003), 7-22. [5] M. Berinde, Approximate fixed point theorems, Stud. Univ. Babeş-Bolyai Math. 51(1) (2006), 11-25. [6] R. Branzei, J. Morgan, V. Scalzo and S. Tijs, Approximate fixed point theorems in Banach spaces with application in game theory, J. Math. Anal. Appl. 285 (2003), 619-628. [7] F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571-575. [8] S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci. 10 (1972), 727-730. [9] Lj. B. Ciric, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273. [10] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena 46(2) (1998), 263-276. [11] R. Espinola and W. A. Kirk, Fixed points and approximate fixed point in product spaces, Taiwanese J. Math. 5(2) (2001), 405-416. [12] G. E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Bull. Canad. Math. Soc. 16 (1973), 201-206. [13] S. H. Hou and G. Ya Chen, Approximate fixed points for discontinuous set valued mappings, Math. Meth. Oper. Res. 48 (1998), 201-206. [14] N. Hussain, A. Amini-Harandi and Y. J. Cho, Approximate endpoints for set-valued contractions in metric spaces, Fixed Point Theory Appl. Vol. 2010 (2010), Article ID 614867, 13 pages. doi: 10.1155/2010/614867. [15] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 10 (1968), 71-76. [16] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83(4) (1976), 261-263. [17] M. O. Olatinwo, Approximate fixed point in b-metric spaces, contained in Chapter 22 (Pages 319-324) of the Book, Recent Advances in Fixed Point Theory and Applications, Nova Science Publishers, Inc., New York, 2017. [18] M. O. Olatinwo, Some approximate fixed point and approximate coincidence point theorems in b-metric spaces, J. Adv. Math. Stud. 11(3) (2018), 576-586. [19] M. O. Olatinwo, On strong convergence of Mann and Ishikawa iterative processes to -fixed points in normed spaces, Acta Math. Acad. Paedagog. Nyhazi. 34(1) (2018). [20] M. O. Osilike, Some stability results for fixed point iteration procedures, J. Nigerian Math. Soc. 14/15 (1995), 17-29. [21] M. O. Osilike and A. Udomene, Short proofs of stability results for fixed point iteration procedures for a class of contractive-type mappings, Indian J. Pure Appl. Math. 30(12) (1999), 1229-1234. [22] B. Prasad, B. Singh and R. Sahni, Some approximate fixed point theorems, International Journal of Mathematical Analysis 3(5) (2009), 203-210. [23] I. A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, Cluj- Napoca, 2001. [24] I. A. Rus, A. Petrusel and G. Petrusel, Fixed point theory, 1950-2000, Romanian Contributions, House of the Book of Science, Cluj-Napoca, 2002. [25] S. L. Singh, C. Bhatnagar and S. N. Mishra, Stability of Jungck-type iterative procedures, Int. J. Math. Math. Sci. 19 (2005), 3035-3043. [26] S. Tijs, A. Torre and R. Branzei, Approximate fixed point theorems, Libertas Math. 23 (2003), 35-39. [27] T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. (Basel) 23 (1972), 292-298.
|