Keywords and phrases: generalized Kuramoto-Sivashinsky equation, Bogning-Djeumen Tchaho-Kofané method, kink-bright solitary waves, implicit Bogning’ functions, geometric properties.
Received: November 1, 2020; Accepted: December 3, 2020; Published: February 8, 2021
How to cite this article: Hugues Martial Omanda, Gaston N’tchayi Mbourou, Clovis Taki Djeumen Tchaho and Jean Roger Bogning, Kink-Bright Solitary Wave Solutions of the Generalized Kuramoto-Sivashinsky Equation, Far East Journal of Dynamical Systems 33(1) (2021), 59-80. DOI: 10.17654/DS033010059
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] M. Rosa, J. C. Camacho, M. Bruzón and M. L. Gandarias, Lie symmetries and conservation laws for a generalized Kuramoto-Sivashinsky equation, Math. Meth. Appl. Sci. 41 (2018), 7295-7303. [2] Naila Nasreen, Aly R. Seadawy, Dianchen Lu and Muhammad Arshad, Construction of modulation instability analysis and optical soliton solutions of perturbed nonlinear Schrödinger dynamical equation with power law nonlinearity in non-Kerr medium, Results in Physics 13 (2019), 102263. [3] A. R. Seadawy, M. Arshad and D. Lu, Stability analysis of new exact traveling-wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems, Eur. Phys. J. Plus 132 (2017), 162. [4] M. B. Hossen, H. O. Roshid and M. Z. Ali, Characteristics of the solitary waves and rogue waves with interaction phenomena in a -dimensional breaking soliton equation, Phys. Lett. A 382 (2018), 1268-1274. [5] M. Belal Hossen, Harun-Or Roshid and M. Zulfikar Ali, Multi-soliton, breathers, lumps and interaction solution to the -dimensional asymmetric Nizhnik-Novikov-Veselov equation, Heliyon 5 (2019), e02548. [6] Hansjörg Kielhöfer, Bifurcation theory, An Introduction with Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer, New York, Dordrecht, Heidelbreg, London, 2012. [7] M. Golubitsky, I. Stewart and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Volume II, Springer-Verlag, Berlin-Heidelberg-New York, 1988. [8] P. Benevieri and M. Furi, A simple notion of orientability for Fredholm maps of index zero between Banach manifolds and degree theory, Annales des Sciences Mathématiques du Québec 22 (1998), 131-148. [9] Z. Grujic and H. Kalisch, Gervey regularity for a class of water-wave models, Nonlinear Anal. 71 (2009), 1160-1170. [10] H. Kielhöfer, Pattern formation of the stationary Cahn-Hilliard model, Proceedings of the Royal Society of Edinburgh 127 (1997), 1219-1243. [11] T. J. Healey, H. Kielhöfer and E. L. Montes-Pizarro, Free nonlinear vibrations for plate equations on the equilateral triangle, Nonlinear Anal. 44 (2001), 575-599. [12] Yakup Yildirim, Optical soliton molecules of Manakov model by trial equation technique, Optik-International Journal for Light and Electron Optics 185 (2019), 1146-1151. [13] Anjan Biswas, Mehmet Ekicid, Abdullah Sonmezoglu and Milivoj R. Belic, Highly dispersive optical solitons with cubic-quintic-septic law by extended Jacobi’s elliptic function expansion, Optik-International Journal for Light and Electron Optics 183 (2019), 571-578. [14] L. Jiang, X. Cheng, Z. T. Fu, S. K. Liu and S. D. Liu, Periodic solutions to KdV-Burgers-Kuramoto equation, Commun. Theor. Phys. (Beijing) 45 (2006), 815-818. [15] Z. T. Fu, S. D. Liu and S. K. Liu, New exact solutions to the KdV-Burgers-Kuramoto equation, Chaos Solitons Fractals 23 (2005), 609-616. [16] Yakup Yildirim, Optical solitons to Sasa-Satsuma model with trial equation approach, Optik-International Journal for Light and Electron Optics 184 (2019), 70-74. [17] C. T. Djeumen Tchaho, New method of construction of the solitary wave solutions of some physical nonlinear partial differential equations, Doctorate/Ph.D. thesis University of Yaounde I (Cameroon), 2015. [18] J. R. Bogning, Mathematics for Nonlinear Physics: Solitary Waves in the Center of Resolutions of Dispersive Nonlinear Partial Differential Equations, Dorrance Publishing Co., USA, 2019. [19] N. A. Kudryashov and M. B. Soukharev, Popular ansatz methods and solitary wave solutions of the Kuramoto-Sivashinsky equation, Regul. Chaotic Dyn. 14 (2009), 407-419. [20] Adem Kilicman and Rathinavel Silambarasan, Modified Kudryashov method to solve generalized Kuramoto-Sivashinsky equation, Symmetry 10 (2018), 527-541. [21] Aly R. Seadawy, Approximation solutions of derivative nonlinear Schrödinger equation with computational applications by variational method, Eur. Phys. J. Plus 130 (2015), 182. [22] Md. Belal Hossen, Harun-Or Roshid and Md. Zulfikar Ali, Modified double sub-equation method for finding complexiton solutions to the dimensional nonlinear evolution equations, Int. J. Appl. Comput. Math. 3 (2017), 1-19. [23] J. R. Bogning, Elements of Analytical Mechanics and Quantum Physics, Lambert Academic Publishing, 2020. [24] N. A. Kudryashov, Solitary and periodic solutions of the generalized Kuramoto-Sivashinsky equation, Reg. Chaotic Dyn. 13 (2008), 234-238. [25] Nikolay A. Kudryashov, Painlevé analysis and exact solutions of the fourth-order equation for description of nonlinear waves, Commun. Nonlinear Sci. Numer. Simul. 28 (2015), 1-9. [26] Mehrdad Lakestani and Mehdi Dehghan, Numerical solutions of the generalized Kuramoto-Sivashinsky equation using B-spline functions, Appl. Math. Mod. 36 (2012), 605-617. [27] Ghodrat Ebadi and Anjan Biswas, Application of -expansion method to Kuramoto-Sivashinsky equation, Acta Math. Appl. Sin. Engl. Ser. 32 (2016), 623-630. [28] G. I. Sivashinsky, Instabilities, pattern formation and turbulence in flames, Annu. Rev. Fluid Mech. 15 (1983), 179-199. [29] T. Kawahara, Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation, Phys. Rev. Lett. 51 (1983), 381-383. [30] J. Topper and T. Kawahara, Approximate equation for long nonlinear waves on a viscous fluid, J. Phys. Soc. Japan 44 (1978), 663-666. [31] J. R. Bogning, Mathematics for Nonlinear Physics: The Implicit Bogning Functions and Applications, Lambert Academic Publishing, Germany, 2019. [32] J. R. Bogning, Exact solitary wave solutions of the modified B-type Kadomtsev-Petviashvili family equations, Amer. J. Comput. Appl. Math. 8 (2018), 85-92. [33] C. T. Djeumen Tchaho, J. R. Bogning and T. C. Kofané, Construction of the analytical solitary wave solutions of modified Kuramoto-Sivashinsky equation by the method of identification of coefficients of the hyperbolic functions, Far East J. Dyn. Syst. 14(1) (2010), 17-34. [34] C. T. Djeumen Tchaho, J. R. Bogning and T. C. Kofané, Multi-soliton solutions of the modified Kuramoto-Sivashinsky equation by the BDK method, Far East J. Dyn. Syst. 15(2) (2011), 83-98. [35] J. R. Bogning, C. T. Djeumen Tchaho and T. C. Kofané, Construction of the soliton solutions of the Ginzburg-Landau equations by the new Bogning-Djeumen Tchaho-Kofané, method, Phys. Scr. 85 (2012), 025013-025017. [36] G. Tiague Takongmo and J. R. Bogning, Construction of solutions in the shape (pulse; pulse) and (kink; kink) of a set of two equations modeled in a nonlinear inductive electrical line with crosslink capacitor, Amer. J. Cir., Syst. Signal Proc. (AIS) 4 (2018), 28-35. [37] G. Tiague Takongmo and J. R. Bogning, Construction of breather soliton solutions of a modeled equation in a discrete nonlinear electrical line and the survey of modulational instability, J. Phys. Commun. 2 (2018), 115007. [38] G. Tiague Takongmo and J. R. Bogning, Coupled soliton solutions of modeled equations in a Noguchi electrical line with crosslink capacitor, J. Phys. Commun. 2 (2018), 105016. [39] C. T. Djeumen Tchaho, H. M. Omanda and D. Belobo Belobo, Hybrid solitary waves for the generalized Kuramoto-Sivashinsky equation, Eur. Phys. J. Plus 133 (2018), 387. [40] C. T. Djeumen Tchaho, H. M. Omanda, G. N’tchayi Mbourou, J. R. Bogning and T. C. Kofané, Multi-form solitary wave solutions for the KdV-Burgers-Kuramoto-Sivashinsky equation, J. Phys. Commun. 3 (2019), 105013. [41] C. T. Djeumen Tchaho, J. R. Bogning and T. C. Kofané, Modulated soliton solution of the modified Kuramoto-Sivashinsky’s equation, Amer. J. Comput. Appl. Math. 2 (2012), 218-224. [42] J. R. Bogning, C. T. Djeumen Tchaho and T. C. Kofané, Generalization of the Bogning-Djeumen Tchaho-Kofané Method for the construction of the solitary waves and the survey of the instabilities, Far East J. Dyn. Syst. 20(2) (2012), 101-119. [43] R. Njikue, J. R. Bogning and T. C. Kofané, Exact bright and dark solitary wave solutions of the generalized higher-order nonlinear Schrödinger equation describing the propagation of ultra-short pulse in optical fiber, J. Phys. Commun. 2 (2018), 025030. [44] Y. Kuramoto and T. Tsuzuky, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys. 55 (1976), 356-369. [45] R. D. Skeel and M. Berzins, A method for the spatial discretization of parabolic equations in one space variable, SIAM J. Sci. Statist. Comput. 11 (1990), 1-32.
|