Keywords and phrases: zero Mach limit, volume fractions, multiphase flow, asymptotic analysis, singular perturbation.
Received: December 3, 2020; Accepted: December 27, 2020; Published: January 22, 2021
How to cite this article: Hyeonseong Jin, Asymptotics of the volume fractions for low Mach number multiphase flow equations, JP Journal of Heat and Mass Transfer 22(1) (2021), 107-122. DOI: 10.17654/HM022010107
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References
[1] W. Bo, H. Jin, D. Kim, X. Liu, H. Lee, N. Pestieau, Y. Yu, J. Glimm and J. Grove, Comparison and validation of multi-phase closure models, Comput. Math. Appl. 56 (2008), 1291-1302. [2] Y. Chen, J. Glimm, D. H. Sharp and Q. Zhang, A two-phase flow model of the Rayleigh-Taylor mixing zone, Phys. Fluids 8(3) (1996), 816-825. [3] D. Ebin, Motion of slightly compressible fluids in a bounded domain I, Comm. Pure Appl. Math. 35 (1982), 451-485. [4] J. Glimm, H. Jin, M. Laforest, F. Tangerman and Y. Zhang, A two pressure numerical model of two fluid mixtures, SIAM J. Multiscale Modeling and Simulation 1 (2003), 458-484. [5] J. Glimm, D. Saltz and D. H. Sharp, Two-pressure two-phase flow, G.-Q. Chen, Y. Li and X. Zhu, eds., Nonlinear Partial Differential Equations, World Scientific, Singapore, 1998. [6] D. Hoff, The zero-mach limit of compressible flows, Commun. Math. Phys. 192 (1998), 543-554. [7] H. Jin, The inner limit process of slightly compressible multiphase equations, Global J. Pure Appl. Math. 12(3) (2016), 2219-2241. [8] H. Jin, Fast transition layers of weakly compressible two phase flow equations near initial time, Global J. Pure Appl. Math. 13(2) (2017), 627-645. [9] H. Jin and J. Glimm, Weakly compressible two-pressure two-phase flow, Acta Math. Sci. 29B(6) (2009), 1497-1540. [10] H. Jin, J. Glimm and D. H. Sharp, Compressible two-pressure two-phase flow models, Phys. Lett. A 353 (2006), 469-474. [11] H. Jin, J. Glimm and D. H. Sharp, Entropy of averaging for compressible two-pressure two-phase flow models, Phys. Lett. A 360 (2006), 114-121. [12] J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag, New York, 1985. [13] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math. 34 (1981), 481-524. [14] S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math. 35 (1982), 629-651. [15] H.-O. Kreiss and J. Lorenz, Initial-boundary Value Problems and the Navier Stokes Equations, Academic Press, Inc., 1989. [16] H. Lee, H. Jin, Y. Yu and J. Glimm, On the validation of turbulent mixing simulations of Rayleigh-Taylor mixing, Phys. Fluids 20 (2008), 012102.
|