Keywords and phrases: population dynamics, epidemiology, mathematical modeling, numerical simulation, numerical methods, basic reproduction number, age structure.
Received: December 2, 2020; Accepted: December 19, 2020; Published: January 21, 2021
How to cite this article: Yaou Jagaya, Mahamane Oumarou Abba, Mahaman Nouri Yahaya Alassane and Bisso Saley, Modelisation and Numerical Simulations of a Malaria Disease Model Transmission, Far East Journal of Dynamical Systems 33(1) (2021), 39-57. DOI: 10.17654/DS033010039
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
[1] R. M. Anderson and R. M. May, Infectious Diseases of Humans, Oxford University, 1991. [2] Gauthier Sallet, Modélisation et simulatuion en épdémiologie, INRIA et IRD, 2010. [3] Jean Luc DIMI, Analyse de modèles épidémiologiques, Application à des modèles parasitaires, à la fièvre hémorragique d’Ebola, thèse de doctorat, Avril 2006. [4] Tewa J. Jules, Analyse globale des modèles épidémiologiques multi-compartimentaux: Application des modèles intra-hôtes de paludisme et de V.I.H., thèse de Doctorat, Juillet 2007. [5] J. P. LaSalle, The stability of dynamical systems, Society for Industrial and Applied Mathematics, Philadelphia, Pa., With an appendix : Limiting equations and stability of nonautonomous ordinary differential equations by Z. Artstein, Regional Conference Series in Applied Mathematics, 1976. [6] 68ième assemblée mondiale de la santé, point 16-2 de l’ordre du jour provisoire, rapport du secrétariat sur le paludisme: projet de stratégie technique mondiale pour l’après, 2015. [7] Rapport sur le paludisme dans le monde, WHO/HTM/GMP/2019. [8] Berge Tsanou, Etude de quelques modèles épidémiologiques de métapopulations: Application au paludisme et à la tuberculose, thèse de Doctorat, Université de Metz (France) et Université de Yaoundé 1 (Cameroun), 2012. [9] Jean Luc Dimi, Analyse de modèles épidémiologiques: Application à des modèles parasitaires, la fièvre hémorragique d’Ebola, thèse de doctorat, Université de Metz, 2006, (France). [10] Josephine W. Kagunda, Mathematical Analysis and Dynamical Systems: Modeling of Highland Malaria in Western Kenya, thèse de Doctorat, Université de Lorraine (France) et Université de Nairobi (Kenya), 2012. [11] H. W. Kermack, Applied Mathematical Epidemiology, Springer, New York, 1989. [12] P. Auger, E. Kouokam, G. Sallet, M. Tchuente and B. Tsanou, The Ross-Macdonald Mode in a Patchy Environment, Mathematical Biosciences, 2008. [13] Ronald Ross, The Prevention of Malaria, Springer Verlag, 1911. [14] J. Arino, A. Ducrot and P. Zongo, A metapopulation model for malaria with transmissionblocking partial immunity in hosts, Journal of Mathematical Biology 64(3) (2012), 423-448. [15] N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bulletin of Mathematical Biology 70(5) (2008), 1272-1296. [16] H. Inaba, Threshold and stability results for an age-structured epidemic model, Journal of Mathematical Biology 28(4) (1990), 411-434. [17] G. Macdonald, The Epidemiology and Control of Malaria, Oxford University Press, London, 3,31,48,96, 1957. [18] World Health Organization Malaria Report 2016, World Malaria Report, 2016. [19] A. M. Oumarou, S. Bisso and B. Mampassi, Stability analysis and simulation of an age-structured hepatitis b model without vertical transmission, International Journal of Differential Equations and Applications 14(1) (2015), 13-41. [20] B. K. A. Wahid and S. Bisso, Mathematical analysis and simulation of an age-structured model of two-patch for tuberculosis (tb), Applied Mathematics 7(15) (2016), 1882-1902. [21] M. Zorom, P. Zongo, B. Barbier and B. Some, Optimal control of a spatio-temporal model for malaria: Synergy treatment and prevention, Journal of Applied Mathematics (2012), 1-20. [22] P. Gahungu, S. Bisso, A. M. Oumarou and B. K. A. Wahid, Age Structure Stochastin Malaria Transmission Model, August 2017. [23] O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, New York, Wiley, 2000. [24] O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990), 365-382. [25] K. Dietz, L. Molineaux and A. Thomas, A malaria model tested in the African savannah, Bull. World Health Organisation 50 (2012), 347-357. [26] P. Zongo, Modélisation mathématique de la dynamique de la transmission du paludisme, thèse de Doctorat, Université de Ouagadougou (Burkina Faso), 2009. [27] D. Bichara, Etude des Modèles épidémiologiques: stabilité, observation et estimation des paramètres, thèse de Doctorat, Université de Lorraine (France), 2013.
|