Keywords and phrases: Hardy space, Toeplitz operator, complex symmetric operator, Fredholm operator.
Received: December 17, 2020; Accepted: January 4, 2021; Published: January 8, 2021
How to cite this article: Marcos S. Ferreira, Complex symmetry of toeplitz operators on the hardy space of the polydisk, International J. Functional Analysis, Operator Theory and Applications 13(1) (2021), 29-44. DOI: 10.17654/FA013010029
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] C. Bender, A. Fring, U. Günther and H. Jones, Quantum physics with non-Hermitian operators, J. Phys. A: Math. Theor. 45 (2012), 440301. [2] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963-1964), 89-102. [3] Y. Chen, K. J. Izuchi and Y. J. Lee, Kernels of Toeplitz operators on the Hardy space over the bidisk, J. Funct. Anal. 272 (2017), 3869-3903. [4] Y. Chen, K. J. Izuchi and Y. J. Lee, A Coburn type theorem on the Hardy space of the bidisk, J. Math. Anal. Appl. 466 (2018), 1043-1059. [5] R. G. Douglas, Banach algebra techniques in operator theory, 2nd ed., Graduate Texts in Mathematics, Vol. 179, Springer-Verlag, New York, 1998. [6] S. R. Garcia, E. Prodan and M. Putinar, Mathematical and physical aspects of complex symmetric operators, J. Phys. A 47 (2014), 151. [7] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), 1285-1315. [8] S. R. Garcia and M. Putinar, Complex symmetric operators and applications II, Trans. Amer. Math. Soc. 359 (2007), 3913-3931. [9] C. Gu, Some algebraic properties of Toeplitz and Hankel operators on polydisk, Arch. Math. 80 (2003), 393-405. [10] K. Guo and S. Zhu, A canonical decomposition of complex symmetric operators, J. Operator Theory 72 (2014), 529-547. [11] E. Ko and J. Lee, On complex symmetric Toeplitz operators, J. Math. Anal. Appl. 434 (2016), 20-34. [12] B. B. Koca, Fredholmness of Toeplitz operators on generalized Hardy spaces over the polydisc, Arch. Math. (Basel) 107 (2016), 265-270. [13] S. W. Noor, Complex symmetry of Toeplitz operators with continuous symbols, Arch. Math. (Basel) 109 (2017), 455-460.
|